RealSpeak Telecom
Sottware Development Kit

SpeechWorks"® solutions

from ScanSoft

RealSpeak v4.0 Manual

Notice

Copyright © 1995-2005 by ScanSoft, Inc. All rights reserved.

ScanSoft, Inc. provides this document without representation or warranty of any kind. ScanSoft, Inc. reserves the right
to revise this document and to change the information contained in this document without further notice.

Realspeak, DialogModules, OpenSpeech, Productivity Without Boundaries, ScanSoft, the ScanSoft logo,
SMARTRecognizer,SpeechCare, Speechify, SpeechSecure, SpeechSpot, SpeechSite, SpeechWorks, the SpeechWorks
logo, and SpeechWork-sHere are trademarks or registered trademarks of ScanSoft, Inc. or its licensors in the United
States and/or other coun-tries.

Portions of the OpenSpeech Recognizer Software are subject to copyrights of AT&T Corp., E-Speech Corporations,
Bell Communications Research, Inc., European Telecommunications Standards Institute and GlobeTrotter Software,
Inc. GoAhead WebServer Copyright © 2004 GoAhead Software, Inc. All Rights Reserved.

U.S. Patent Nos. 5,634,087; 5,839,103; 5,862,519; 5,995,928; 5,809,494; 5,765,130; 6,061,651; 6,173,266;

6,519,561; 6,539,352; US6665641 and EP1501075. One or more patents may be pending in the United States and other
countries.

Without limiting the rights under copyright reserved above, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means, including, without limitation, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of ScanSoft, Inc.

Published by:

ScanSoft, Inc.
Worldwide Headquarters
9 Centennial Drive
Peabody, MA 01960
United States

RealSpeak Telecom for Windows Software Development Kit User's Guide and Programmer's Reference
V4.0 © - December 2005

Table of Contents

INTRODUCTION ...ttt ean e eaa e eanns 16
Introduction to ReAISPEaK.......cciiiiiiiiiiiiiie ittt s e 16
Organization of this MANUAL.........cccciiiiiiiiiiie e e 16
Contacting SCANSOLL........ooviiiiiiiiiii s 17
Defect REPOLt FOIM cuviiiiiiiiiiiiiiiicie s bbb 17
SYSEEIM OVEIVIEWeeiiiiiieiietiesee s et e st s e st e sr e e s st e s e e st e s e ese e s Re e R e e e e s e e sanesae e smeenneeaneenneannenreenreerens 17
Lo oY e Te1u oY F PPN 17
APT SUPPOLTaitiitiiuiitiiieie i bbb 18
MALKUP SUPPOLT vttt bbb bbb 18
Product SUPPOLt...ciiiiiiiiii it s 18
Input/Output behavior of RealSpeakciiiciiiiiiiiiiiiiii s 19
Three different text INPUt teChNIQUES ...veiviiiiiiiiiiirc s 19
Presentation of the INPUL TEXE wouviiiiiiiii i s 19
Language and vOiCe SWItCHINZ.....ccuiiiiiiiiiiii i 19
AUdiO OULPUL SEEEAMING .1euviiviitiitiitiiieie st bbb bbb 19
Modes of operation: in-process and CHENt/SEIVEL...ouiiiiiiiiiiiicii s 20
I0-Process MOAE. .o 20
ClENt-SErVEr MOAE. . uiiiiiieiie it e e e s s e e s bbb sa e e e s 22

Use of RealSpeak in telephony enviroNmMentscooviiiiiiiiniininin s 27
New features for RealSpeak 4.0.........ccociiiiiiiiiiiiii s 28
INSTALLATION GUIDKE...... oot 31
LACENSING ..ttt e e 31
Licensing - IMPOLTANE fOLE..uuiuiriiiiiiiesie st 31
OVELvIEW Of HCEMSIG . cuiitiiuiitiiiiieiie sttt bbb 31
Installation on WindOWSccciiiiiiiiiiiii 32
Installation Steps for WindOWS.....cccviiiiiiiiiiiii 32
Install the cOMMON INSTALEE ..oouviiiiiiiiii i e e e s 32
Install the voice specific INStaller... .o 35
Configuring the iCenSING .. .viiiiiiiiiiiii i s 37
Running a demo ProGramcuiiciciiiiiii i s 38
Installation 0N LIMUX.....coiiiiiiiiiiiii e s 39
Installation Steps fOr LIMUX wuuiiiiiiiiiiiiiiicii i s 39
Step 1: Install the cOMMON COMPONENLS ..viviiuiririiiiiiie i s 39

Step 2: Install the putchased VOICES....uiviiiiiiiiiiicii 39

Step 3: Install the icensing COMPONENTS ..iiviiiiiiiiiiiii i s 39

Step 4: Configuring and starting of the icensingovvvviiiiiiiiiiiiii i 39

Step 5: Updating your environment SELHNZS. . uuueririieiisisisisie et 40

Step 6: Running a sample PrOGIAM ..ooviiviiiiiiiiiiiie i e b 41
ENvironment VAtiables ..o e s 42
ReEAISPEAK COMPONENTScouvirriiriiririeeiietestes st sr e st se e s e st sre s e sbeese e e e s e s tesr e e b e sbesse s e e s e sresreeresaeereeanennes 43
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay

Programmer's Guide Table of Contents/3

RealSpeak APT DALY c.viiviiiiiiiiiiiie it bbb b 43

TTS API SUpPOrt HDIAties cuvvuiiviiiiciiiiiiiie s e 43
"T'T'S SEEVEL weeuteteuteeteeeatee ettt e atee e sbe e e sae e e ket e se e e abe e e se e e b et e s ae e e be e e aRe e e b e e e Re e e be e e e ae e e eRe e e ane e e aRe e e enneeane e e e nneennns 44
Engine and language HIaries ...uiiiiiiiiiiiiiciiciiie e s 44

F 2GS o oo ooy 20 s & PP 44
DEPLOYING REALSPEAK ...ttt e e 46
IEFOOUCTION ... e e s s 46
IN-Process USE Of REAISPEAKcoeiiiiiiiiie ettt et s ae e e es 47
oL o T PP 47
APT Call SEQUENCE....viiuiiiiiiiti ittt e bbb bbb s bbb 47
Demonstration apPCATIONS ...vieiiiriiiii i s 49
YR aTe E T Ca B 1C o Lo PP 49
Some comments on the IMPIEMENTAON ..uiiviiiiiiiiiiiiii i s 50
StANAATAEX DIEIMIO .1t utieiitie ittt s b e s s r e sar e e h et e e e nnr e e s r e e nnr e nareennnas 50
Some comments on the IMPIEMENTAON ...icviiiriiiiiiiii i s 52

Z LY T B 131 Vo ST P PP P PSP PRPPRO 53
Some comments on the IMPlEMENTAHONcveiiiiiiiii s 53
Client/server use of RealSPeakccccovuiviiiiiiiiiii s 54
oL o T PP PP 54
Running the TTS SELVEL . ittt bbb 54
LG e TP TP PP PP P URPTOURRRTN 54
Configuring the SELVEL i s 54
Specifying the installation dIfECtOrY....iiiiiiiiiiiiici 55

APT Call SEQUETICE vvviviiiiiiie sttt s bbb bbb bbb sh e bbb 55
Demonstration apPCATIONS ..i.vieiieeiiiie it e 56
TWONOAE DIEIMIO 1ttt sttt sr e n et en e e s r e e r e e r e e ne s e e sneesreenneenneeaneene 56
Some comments on the IMPlEMENTAHONcveiiiiiiiiiii s 57

O T T b1 (30 B 1 o Lo TN 57
Some comments on the IMPIEMENTAON ...icviiiiiiiiiiii i s 59
ReAISPEAK PATAMELELSouviviiiitiiriiieeiiee ettt s r et r e r e sr e r e b r e e nenr e sreer e b ene e ennes 60
B EaNE e Ta 1R 1ol Te 3 s DA TP PP PRP TR PPPI 60
Use of Configuration FIlescoiviiiiiiiiiiiii s s 61
Setting of Parameters via the APL......ccciiiiiiiiiiii s 61
NON-SPEAK PAIBIMELEN'S. ... e iveeveieeeeeeeeiesesteste st eseee e e stesrestesaeeseeeesessesaestesseeseeneenseneeseensenseesensenneen 61

S0 TC = T 111 (= £ 61

TEXE MALKUP 11ttt 62
Overview of RealSpeak parameters .o 62
Use of RealSpeak in telephone or dialogue applicationsccccovviiiiiiiiinininn e, 68
Multiple engINE INSTANICES uiiriiiiiiiriieiie it b s s 68
Real-time responsiveness and audio SHEAMING.......covviiiiiiriii s 69
REALSPEAK AP .o e e e e 72
New and Changed in RealSpeak 4.0 APIccoccoiiiiiiiiiiii 72
DefiNed Data TYPES ..ccveiviiriiiieiiiieiteite sttt e r et se e r e r e sr e r e et b et e e e r e r e nr e r e ne e 74
D 0 1Y .2 (8 TSP PP 74
HTTSDCTEG .t i ittt ettt ettt ne et s e s s e s e e et s e e sse e sme e sae e ne e r e enneeneenr e e neenennnesneennes 74
HTTSINSTANCE ...ttt r e r e s e e re s ee s e e sme e sne e neeas e enreeneesreenreeanennesnnennis 74
HTTSMAR ettt et n e e a e s e R e E e e et s e e s ae e sRe e nRe e ne e r e enneene e s s e e reenenanesnnenns 74
HTTSVECTOR. ettt ettt ettt e e e e s skt et e e e e e s e ane e e e e e e e s aasnseeeeeaeeaaannseeeeeeesaaannsnneeaaeaaannn 74
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay

Programmer's Guide Table of Contents/4

0 Y 2 Y 75

LH_SERVER_INFO ..ot n s s s s s s s s s s s s s s e sn s s an s e n e s s annnanananananannnas 75
LH_SDEK_SERVER oottt ettt e e e e e et etttee s e s e e e e eaaaa s eeeseessaaaaaeseseesssnannsasessessasnnssesesensrannnanens 75
TTSCAIBACKS +rtteeiiiiiitiiiieeeiei ittt ee e e e e eetatee e e e e e e easaareeeeaaaseaasstbeeeaaeeeaaansseeeaaesasaasssseesaaessasnsanesanssannsnsens 76
10 B B AN L PPt 76
10 B T B AN L N PPt 79
TTS_PARAM_V ALUE T ..o cttttete ettt e s sttt e e e s s st e e e s s s st sae e e e e s e s sasaeeeeaeeesnnsnsaeeeeeesennnnsens 80
1 T AN AL PR 80
TTS_FETCHINFO T oottt ettt et e e e e e e e e e e e e e e eeenenees 81
SpeakData (PSPEAKDALA) ..vvveueerirreeriereeeereree ettt s e e ettt 82
DictionaryData, (PDictionaryData)ccciiiiiiiiiiiiiiic i s 87
G2P_DICTINADME . ettt ettt e e e e et et a et e e e e et ee st e e eeeeeeesstaaaaeseeasstansaaeeeeessnsanneeeeeersrnnnnn 88
N I\ 73 R ST 89
18 IS s LY 89
1 T\ 7 5 o T 91
IR T S 7670 S\ 2 91
I T S S Te T TS o s LI\ 2 < 93
N IS e s oLV FF Y 93
TTS_ParagtaphMarkccociiiiiiiiiiii 93
N TN (/e 11 3 Y 94
Function DESCLIPLIONSc.ovviiiiiiiiriiieieieestese sttt st r e e b b r e e nenresreeresaeene e ennes 95
B BV Y7y S 95
Y €V Y 7SR 96
B Y VR 17 S 97
Y oo T S 98
TS P OCESS uuurreereeeeeiiiutreeeeeeeesaataeeeeeeaesaasasaeeeaaesaaassaeeeaaasaaasstbeeeaaeseaaansseeseseeesaansnneeeeaaesaansnsaneeanesannsnrnns 99
770 o T 100
IR Yo s PSPPSR 101
B R 1T R ¥ o s R 104
T T 3o o R 105
Y 1T R b o s R 106
Y I Ve LS DTt 1R 107
R e T LS D T PSP PURRRRNE 108
TtSUNIOAAUSIIDICTEX 1utviiiieiiiiiiiiiiie e e e esciie e e e e e e stree e e e e e e s eta e e e e e e e e e saaaaeaeeeaaesaassnsaeesaaessansnsaeeeanssannsnrens 109
TtSUNIOAAUSIIDICE uuuuiiiiieeeeiiiiieie e e e e esette e e e e e e e e st ae e e e e e eesenbssseeeaaessansssseesaassaansnsaeesaassaasnsseeeanssannsnrens 110
TS ENADIEUSIIDICEE X . uttiiiieiiiiiiieie e e e ee ettt e e e e e e stb e e e e e e e s e ntaeeeeeeaeesaasaeaeeeaaesaansnsaeeeaaasaasnsaeeeaassannnnrens 111
Y s T o3 1ol 013 ot S 112
R BT (] Y B T R 113
R BT [Y I T R 114
TSDISADIEUSIIDICESIEX tuuvrreesuureeestteesessteeessteeeeateeesessseeesssseeessssaeeeanseeessnseeeeanseeesaneeessnssnessansenessnnnns 115
R e T (2 B B et I T PSPPI 116
TtSUNIOAAG 2PIDICHLSE 1evteeeeiiiiiiiieeeeeesiitteeeeeeeeestaeeeeeesessasseeeeeaeessasssseesaassaassssseesaassaassnsseneanssannnrens 117
TtSGEEG2PIACETOTAL 1uvririieeeeiiiiieieeeeeeeetet e e e e e e e e staeeeeeeeesaaasaeeeeeaaessasneseesaaesaassssaeesaaessassnsseneaassannsnrens 118
R 1T 2 B T 15 R 119
TESIMAPCLEALE 1.vveveiiiiiisiisie sttt bbb bbb bbb bbb a e s b b b s 120
TESIMAPDIESLIOY vttt bbb bbb 121
TESIMAPSELCRAL ..t e e s 122
TESIMAPSELUSZ .ttt b s 123
TSMAPSEBOOL ..t 124
TESMAPGELCRAL 1.vtiiiciii st s 125
TtsMapFLeeChar ...cciiiiiiiii i 126
TESMAPGELUSBZ ..t e e s 127
TESMAPGEBOOL ..t s 128
TESCLEAtEENZINE 1.uviiiiiiiiisic it s 129
TtSREMOVEENZINE .vviuiiiiiiiiiiciiicc s 130
THSRESOULCEALLOCALE «uvvrerieeeiiiiurieeieeeeeeeitreteeeeeeasataeeeeeaeesaassseeeeeaaessasnsseesaassaassssaeesaaasaassnsseneanssannnrens 131
TS RESOULCEITEE 1 iitiiiiiiee e e ettt e e ee ettt e e e e e e et e e e e e e e s e abeeeeeeaessaaaaeeeesaeesaassssaeeeaassaasnsaeeeaassannsnrens 132
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay

Programmer's Guide Table of Contents/5

TUSEE CallDACKSuuviieieiiiiiiiriiee e e e e eeitt et e e e e eetab e e e e e e e s e s aabreeeeeeseasssbaaeeeaesessaabbeseeeeseessbssseeaesesssrrrneeenns 133

TTSSOURCECB ...ttt bbb bbb bbb s 133
TTSDESTECB ...ttt bbb b bbb bbb bbb e b bbb 135
TTSEVENTE B ..ottt bbb bbb bbb bbb 136
B0 COAES...uiiiiiiiiiii s 137
SAPI5 COMPLIANCE ...ttt e e e e e ens 141
APT SUPPOLT c.eveiieeiete sttt ettt sr bt b et e e e s b s r e r e s bt e bt e st e s e e e e r e R e s bt e R e e et e R e e e r e r e nr e r e Rt re e nes 141
SAPIS INTEIFACE .. .ooviiiiiiiiii e e e e s b e e e e s e e a e 143
ISPV OICE TALEITACE wvvviviiriiiiiiiiie e bbb 143
ISPV oice: : ISPEVEAISOULCE c.civiiiiiiiiiiiii i s 144

ISPV OICEISELOULPUL 1ttt bbb s sb e 144
ISpVoice:GetOutputODbjectTOKEN .viviiviiiiiii it s 144
ISpVoice:: GetOULPULSLICAM....viiiiiiiiie st b 144

ISPV OICEIPAUSE. cuvviiiiii sttt s 144

ISPV OICEIRESUME ittt b s 144

ISPV OICEISEEVOICE vttt bbb 144

ISPV OICEIGEEVOICE vttt b b 144

ISPV OICEISPEAK weiuviiiiiitiie it s 144

ISPV 0ICe::SPEakSIEaAM . viiiiiiiiiici s s 145

ISPV OICE:GEISTATUS uvvrviiviiiiiiiciiiic e s 145

ISPV OICEISKIP ottt s 145
ISPV 01Ce:SEtPHOLILY coviiviiiiciiiiiie s s 145

ISPV 0ICE:GEtPHOLILY vttt e b 145
ISpVoice:SetAlertBoUNALY ..o.ciiiiiiiiiiiii 145
ISpVoice:GetAlertBouNdarycccviiiiiiiii i 145

ISPV OICEISEIRALE 1.ttt s 145

ISPV OICEGELRALE ..ttt s 145

ISPV 0ICe:SEtVOIUME vttt s 146

ISPV 0ICe::GEtVOIUME vttt s 146
ISpVoice: WaitUntlIDONE .viiuiiiiiiciiis it s 146
ISpV0ice::SetSyncSPeak TIMEOUL ..oviiviiiiiiiiiiiie et s 146
ISpV0ice:GetSyncSPeak TIMEOUL ..viiviitiiiiiiiiie et b 146
ISpVoice:SpeakComplete EVENt ..o s 146

ISPV 0ice:ISULISUPPOLLED .vvviiiiiiiiiiiiiic i bbb 146
ISpVoice:DISplayUL.....ccuiiiiiiiiiiiciiii i s 146
YA o 1Y I U TP 147
BOOKIMATK 1. s 148

(70T 1 TP 149
EMPR e s 150

57 TP 151
PALTOLSP vttt e e 152

PIECRL st s 153

PLOM e e e e e e e 154
TP 155
SHIEIICE 1ttt e e e b e e e e e aeene e 156

SPELL et b 157

V405 Lo TP 158
VOIUITIC .ttt e s b 160

Load ScanSoft Uset DICHONALICS ...verviiiiiiiiir e s s s s s 160
RN o R O T LT s PP 161
Requited SOFEWALE ...iiviiiiiiii i 161
Requited HardWare ..o 162
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay

Programmer's Guide Table of Contents/6

INStAlling SAPIS LAYEE viiviiuiiiiiiiiiiie sttt bbb s b e 162

Change in the REZISLEY cuviviiiiiiiiiii e 162
Modifications in the Configuration Fileccociviiiiiiiiniiiiiiiis s 162
Load Uset DICHONALIES ..viuviiuiiiiieitieiiiiie s s s s sa s e s s sa s s s aa s saa s sh e sa e 163
MICLOSOLE LLEXICOM .ttt ittt e e s s s e e s e 164
ENable LOZEINGiiiiiiiiiiiii i e 164
SSML SUPPORT ...ttt e e e e e e ean e 167
Introduction and PULPOSE.......eiuiiiiiiiiiiieitie ittt et st 167
LIRS 1ttt e e 167
SSML COMPANCE.coiiiiiiitiitiii it bbb sh bbb e e b bbb b 167
Support for the SSML 1.0 REC September 2004coiiiiiiiiiiiiiiiii s 167
Legacy support for the SSML 1.0 WD December 2002cccuiiiiiiiiiiiiiiininiisesissis s 168
Legacy Support for the SSML 1.0 WD Aptil 2002ccciiiiiiiiiiiiiiiiisini i 169
Volume Scale CONVELSION .uviiiiiiiiiiiiiii e e e 170
Rate Scale COMVELSION ...uiiiiiiiiie it e s e e e e sae e nesan e 171
Break Implementation . i b 172
SAY-2S SUPPOLT vttt bbb 172
The Lexicon BLemMEnt. oo s 176
Scansoft SSML EXteNSIONSccoviiviiiiiiiiii i s 177
APT fUNCHOMNS ...t bbb bbb b bbb bbb s 178
LANGUAGE IDENTIFIER 1.0.. ..ot 180
Language Identifier 1.0: Prefacecccccooiiiiiiiiiiiiiii 180
OVEEVIEW 1.ttt sttt e e s b b e b e b e s e s he e s h e e b s e s he e e he e sh e e s b e e b e e e e s e sae s sae e eae e n e anea 180
System REQUITEMENTS 1ouviiuiiuiiiiiiiiciis s b 180
SIZE LEQUITEIMENLS 1.viviiiiitiiiieiie it s 180

OS FEQUITEIMENLS 1uviviitiitisii et s b e bbb b b s a s bbb 181
SOFtWALe FEQUITEIMENTS 1urviriiitiiiiieiie st s 181
Installing the Language TD SOftWarecccoviiiiiiiiiinii i 182
TOSEAIING 1ottt s 182
Using the Language ID SOftWarecooiiiiiiiiiiiii i 183
OVEEVIEW 1.ttt ittt e bbb e b e b e s e s ae e s ae e b e s e s he e e he e eh e e s b e s b e e e e s e s san s she e sae e nneanea 183
7T e T TP 183
Available Languages and Codings......ccovviiiiiiiiiiiiiii e 184
Language ClassifICAiON ...iiiiiiiiiiiiiii i s 185
Tuning ClassifiCationouuiiiiiiiici e 185
Language ID APT FUNCIOMNSo.coiviiiiiiiiriiiietieceee sttt sre st sresre s e s e nesr e resnesne e esnennens 186
DAta SEIUCTULE FEICIEIICE .vnuviiuriitieitie it e s a e s e s s a s s e s aa e saa e shassa e ne s 187
50 PP 187

LID _SCORE _T etiiiiiitiee ittt st s a e s b e e e s e e e e s enn e e s s anr e e s s sareeesaanee 187
LHA_ODBJOPEI) eevviiiiiiiiiii it b bbb 189

G T 1o <t § TP 190

G T 1G0T (TP T TN 191
USER CONFIGURATIONoouiiiiiiiiiiiieiiieee et 193
L0 3 3 T 193
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay

Programmer's Guide Table of Contents/7

TUSEE DACHONATIES ... uuuviiiiiiiieiitirieeee e e ieiitr e et e e e seasabaeeeeeeeeasastaseeeeeseasasbsseeeassesasabsssseeesesasbareeesssesasrsraeeeens 193

Functional DesCripon.. i 193
Dictionaty subsStitution £UlES....cuiiiiiiiiiiiiii i 194
Dictionary Format for RS Host version 4.0 ... 195
Dictionary format for oldet RealSpeak versions (3.X)cuvviiiiiiiniiiiniiiiinisessssi s 199
Migration from 3.x to 4.0 format
Case 1: Orthography Onlycccciiiiiiiiiiiiiii
Case 2: phonetics onlycccueeee.
Case 3: both orthography and PhONELiCoiveveiirriieiirceee e 201
Uset DIictionary AP CallS ...couveceiiieciirinecenii e 202
Restrictions 0N USEt dICHONAIIES wevvrreruerrsteieieeeteeesseeesteeesseeesbeeesseesbeeasnee s beesneesbeesneesbeesnneesareesnneean 203
Automated User dictionary LOadingc.covviiiiiiiiiiniiiis i s 203
User Dictionaty Editor (Windows only) ... 204
USEL RULESEES ... iuieitiieie ettt ettt ettt et he e et et e sae e e b et e ae e e be e e aae e e beeeane e e beeeneeebeeeneesbeeennneaans 205
L EaTqoTa LR Telu o) WP PP ORISR 205
Tuning of text normalization via tuleSEtSuiiriiiiiiiiiiii i 205
RULESEE FOTIIIAL 1. vveuteereeteeee sttt ettt s e s re e s r e e n e st e me e e r e e s e e s reenesanesaeesreenneeneennean 206
HEAAET SEOHOMN 1ttt ettt ettt et b e e s e e e b et e s ae e e abe e e sme e e be e e eseeeabneenneeeabeeenneeenee 206
B R YO ol e X NPT PSP PP PR PRPI 207
Rule €XAMPIE...oiiiiiiiiiiiiiiiiii i 208
SEALCH-SPEC vttt s 208
REPIACEMEAE-SPEC. ctiviitiitiiiiit it bbb bbb 209
Some examPples Of TULES ..vviiiiiiiiiii i 209
RESIICHONS OM TULESEES .reuvirurerieesreeriesrieseesseesseesre e s s e s e seesmeesreesreenressneameesreenre e reenesanesanesreenneeneenneans 210
Effect of rulesets on the TTS PerfOfMance.....ocuvuiiiiiiiiiiiiii e 210
RULESEE APT FUNCHONS +eeuuveetreeieeeiteeesiee ettt e sie e teeestee e be e e sbee e beeebe e e beeeneeaabeeeneesabeeenneesbeesneesareesaneesn 210
SAMPLE COE vttt 211
Automated ruleset 10ading. . iiiiiiiiiiiiiii i 212
Custom G2P DICIONALIES ...veiuviieeiiieeriierierieseessee s e e e e e sr e ne e e sreesre e re e resnesanesreesneenneanneans 213
CUSTOIMN VOICES . uteteeteeteeie ettt ettt et es e s et e et e st s e e s e e sme e nre e neea et emeeeR e e sReenreeaneeanesanesreesreenneenneens 214
Configuration FIlescccooiiiiiiiiiii i 215
Configuration file fOrmatocoviiiiiiiiiii 215
Configuration PALAIMIETIELSoovviviiririeeiietesr ettt s st sr et e st s s e ss e s s e st e sr e e b e st e e e s essesresresresaeesnenens 217
Single value PALAMELELS wiiviiuiiiiiiiiiiie sttt 217
Environment Vatriable OVertides ...uuuuiiiuiiiiieiiiiiiieiieesie ettt sie e e e sseessneeesnee e 217
S0 o LT TSP U PP TPPPTOPRTO 217
DESCLIPTON 11ttt e bbb bbb e 217
DD TGS 7B TSP PP PR PR 217
OPHONAL ettt e s 217
NEtWOTK PALAMEIEIS .uviitiiitii ittt s sr e sr e e sre s s re e sne s 217
FLLEIMEIIES .ttt ettt ettt ettt sttt st h e st e e b et e s ae e e e R e e e s Re e e R et e eRe e e Re e e aRe e e be e e anneeabeeenneeneeennneean 217
L 1CT T Te LT 217
I BT O PP PP PR PPPI 217
OPHONALL ittt e e 217
LICenSING Parameters ..o iiiiiiiiiiiiesie s 218
FLIMICIIES 1.ttt sttt sttt ae e a e n et R e e R e e n R e e R e e r e e e nne e nneenneeneerean 218
DESCLIPTON 11ttt e bbb e bbb e 218
I BT PSP PP PR PPPI 218
SpPeak PAramELers c.uiiuiiiiiiiiiiriiieie it s 219
FLLEIMEIIES .ttt iuteeeuree sttt ettt st sa e st e bt e st e e b et e s ae e e e R et e s Re e e b et e eRe e e Re e e eRe e e be e e enneeabeeeneeeneeeanneean 219
L 1CT T Te LT 219
D TGS 7S PSP P PSP 219
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay

Programmer's Guide Table of Contents/8

MiSCellaneous SEIVEr PATAMICTELS tuvivrrrrieeeeeiiiirreeeeeeeiasissreeeeessesissrsseeesssesssssssseesssesssssssseesssssensssees 219

FEIMIEIITS 1eeeiitrrreeeeeeieeittree et eeeeeesabreeeeeeseasabaaeeeaesesaabbsaeeeesesaababaeeseeesassasbeeeeeeeeaasabreeeeeeseaannrareeeeens 219

L 1CT 1 T Te LT 219

1 7101 SRR 219
Internet Fetch Cache Parameters . cuuiiiiiiiiiiiiiiiiiiiiieieieieieieeeieieiesereiereresesesesesereeeeeeeseeeeeretereeeseeeseaesees 219
(S s Yo R SR 219
DDESCHPHOMN 1.vvereeeterree st sttt r e e e s s e e e r s e e s e e s e e s e s R e e s e e R e neene e R e e r e n s e n e n e nns 219

D=3 22101 219
Internet FEtCh ParamEters .ueueiuueeeiieeeeeiireeeiessteeesesseeesasseeesesssesssssssessasseessssssessssssseesssserssssssessssssenes 220

) 1T e 1S L 220

L TCT 1 T Te LT 220

1 7101 SRR 220
Diagnostic and Etror Logging Parameters .. .uuuiiiriniiiiii i 221
(S s Yo R SR 221
DESCLIPTON 11ttt e bbb s bbb s 221
51 RO OO RERRRRRRPPNE 221
Multiple Value PArameEters . ..uiiceiieiiieiie ittt s b 221
IDIEE EXtCIISION _TTULES tuvvurursrsrusarsrasssasene 221

LG 7 Ab 1 L e oy 03 s V- b u TR 221

LGS R e 1 L b (Y N 222

@ 1S S VT Suuruuururursssrsssssrasssasene 222
REALSPEAK E-MAIL PREPROCESSOR.. ..ottt aeneenanen 224
N 0 Yo Lb Lol s oo YR 224
E-Mail Header ProCesSingccooooiiiiiiiiiiiiii s 225
Header FIEld EXIFaCtiONccviicieece et ettt e e st tesneene e e ensenes 225
Header FIEld REAJINGcoviiiiiceeeee ettt et st sn e ae st e resneene e e eneenes 226
E-Mail body ProCESSINGccviiiiiiiiiii i e 227
LSS oL = o1 o] o SRR 227
= Lo 0007 T2 (o] o TSR RSS 227
Customizing the E-Mail PreProCeSsSOr.ooiiiiiiiiiiiiiiieiiiiti sttt st enens 227
Support for markup in E-mail Mode........cocoiiiiiiiiiiiii s 227
NAtIVE MATKUP c1eeuieiiciiie e e 228
SSMELMALKUP 1.ttt e bbb 228
E-mail Preprocessor AP fUncCtionsccceiiiiiiiiiiiiiiicie e 228
SAMIPLE COAE ..viiiiiiiiiii it 228

] i 8 L O 5 8 " N i 231
B E S0Ye AL Lot (03« WEUREE PP 231
BN o B TS (S 0 1 Lot YT 231
Calling COMVENTION ...eveeiriiitisie st si ettt ettt s st e sh e bt st e e e s e s s e s b e sh e e b e s et e e e s e nrenresreeresaeeneennen 231
SDK’s preferfed ChALACEE SEt......uicuiiiiiriiieiiiririeet ettt b e e sr e e r e er e s 232
RESUIL COAES....coiiiiiiiiiiiiiiiitti et e e e e ettt e e e e e et e e et e e e se s e abbe et eesseababseeseaesaasabbeeeeasseasabbeeseessenssnreneseaesennes 232
SWItts AAADICHONALYENLIY() ovrrerveeeeeerrseeesseeeeessesssseessesesesessssessssessesssseessseesesessseessssessessessesesseeeenes 235
LY (0T [T SRSRRRRRRPPN 235
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay

Programmer's Guide Table of Contents/9

DN OLES uutttteereeeieetrteeereeesaauar et e e eeeeesaateeeeeeeeesanbeeeeeeaeeeaaasaeeeeeeeeeeannteeeeeeeeeannbeneeeeeeeaannnaraeeeeneeannnnnre 235
SWILESCAIIDACK() +ovveuiiiiiiiiiiii it bbb bbb s bbb 236
1Y o TSP RRURPRRRRNE 236
PULPOSE 1.ttt s 236
PATAIMIELELS teeieiieitttreeteeeeeeiteeeeeeeseasatreeeeeeeeaaatsseeeaaaesaaasssseeeaaasaaasnsseeeaassaaasnssaseaeasesaansnsanesanesannnnnnns 236
SEIUCTUTES 1uvvetureesureesreessseesseesssessseessseesseeasseesseessesessesssseessessssesesssssasesesesessssesessssesensessssessnensnns 238
INOTES +eeureeeureeeiseesseeeaseessteeaaseeaasesaseesnteeaseesnsesanseesasesanseesnseeanseesnseeansesenseesnseesnteeenseesnreesnseessenssnesn 240
SWILESCLOSEPOLT() -veuveurererertiaririeeseeeesrestestestesseese e s e s e sesresb e s st e se e e e s e besreeb e s bt ebe e e et e neesrenbesreeb e e e ennenes 242
1Y 1 Y 242
PULPOSE ..ttt s 242
PATAIMIELELS teeieiieitttreeteeeeeeiteeeeeeeseasatreeeeeeeeaaatsseeeaaaesaaasssseeeaaasaaasnsseeeaassaaasnssaseaeasesaansnsanesanesannnnnnns 242
TSI Ko SRR 242
SWIttsDeleteDictionary Entry ()ccoiviiiiiiiiiiicii s s 243
LYY £ SRS 243
PULPOSE 11ttt bbb bbb 243
DN OLES uutttteereeeieetrteeereeesaauar et e e eeeeesaateeeeeeeeesanbeeeeeeaeeeaaasaeeeeeeeeeeannteeeeeeeeeannbeneeeeeeeaannnaraeeeeneeannnnnre 243
SWIttsDictioNaryACtivATE()ceiiiiiiiiiiiiiie i s 244
1Y o [T R PRRURPRRNE 244
PULPOSE 1ttt s 244
PATAIMIELELS treeeiieittreeeeeeeeeeiteeeeeeeseasatreeeeeeeeaaassseeeeaaasaasssseeeaaasaaasnsseeeaesseaasnsssseeeasesaansnsaeesanesannnnnnns 244
NI Yo YR 245
SWIttsDictionatieSDEACTIVALE() «uvvrrrerreerreesrerirerirereeseeseesreesreer s e s e sre e e e sreesresnesnesreesreesreenneenneans 246
SWIttsDictionatieSDEACTIVALE() «.vvrrrerreerreesrirrerieereeseeseesreesreere s e ss e e sre e e e sreesresnesnesreesreesneeneeneans 246
LYY £ S 246
PULPOSE 1ttt s 246
PATAIMIELELS treieiieittteeeeeeeeeeiteeeeeeeseasatreeeeeeeeaaatsseeeeaaasaaasssseeeaaasaaasnsseeeaassaaasnsssseaeasesaansnsseesanesannnnnnns 246
TSI] Ko SRR 246
SWIttSDICHONATYILEE() .reeveerierieurirseesreesree et ssre s e sseesre e s st e s e e s e e e es e e sreenre e reanesneesanesreesreenreeneenneans 247
LYY £ SRS 247
PULPOSE 11ttt bbb bbb s 247
PATAMIELETS 1vveeeeuureressueeeessiteeesaauteeesssaeeeeaseeeeaasseeeaasseeeeansseeeaasseeesasseeeeanseneeaansanesassnneesnseneesnnsesesnnnnnes 247
TSI] Yo TP SRR 247
SWIttsDictionaryLoad(()cccviiiiiiiiiiii i 248
1Y o TSP RRURPRRRRNE 248
PULPOSE 1ttt s 248
PATAMIELETS 1vveeeeuureressueeeessiteeesaauteeesssaeeeeaseeeeaasseeeaasseeeeansseeeaasseeesasseeeeanseneeaansanesassnneesnseneesnnsesesnnnnnes 248
SEITLCEULTES +uuvveeeeusreeesauseeessseeeeaasseeesassseeeanseeeaaassesesassseeeansseesaassesesasneeseansenessnssessssssnsssnssnsssnnsesesnnnnees 248
I Yo Y S 251
SWIttsGetDIiCtioNALYEKEYS () c.veereeurerreerreesrerrerresiresresieesree st esreeresseess e sseesreesresnesnesnnesreesreesneennesnneans 252
1Y o [T SRR RURPRRNE 252
PULPOSE 1ttt s 252
INOLES uuttrteeeeeeieeittreeeeeeeseaaataeeeeaeeeaaaatseeeaaeeeaaatssseeeaaseaassssseeeaaesaanntseeeeeeseaansseeeeeanesaansnraeeeanesannnnnnes 252
SWIttSGEtPALAMMELEL() ee.veereeurierieurirseesseesreesreesresneseesseesreesreeaseesreasneaseesseeare e reenesseesanesneesreenneeneenneans 253
LYY £ 253
PULPOSE 11ttt bbb bbb 253
PATAMIELELS 1vvereeureressuseeeesteeeeaauteeesssaeeeeaseeeeaasseeeaasseeeeasseeeaasseeesassneeeanseneeaansanessnsenessnseneesnssesesnnnees 253
TSI] Ko SRR 256
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay

Programmer's Guide Table of Contents/10

LYY £ SRS 257
PULPOSE 1.ttt s 257
PATAIMIELELS teeieiieitttreeteeeeeeiteeeeeeeseasatreeeeeeeeaaatsseeeaaaesaaasssseeeaaasaaasnsseeeaassaaasnssaseaeasesaansnsanesanesannnnnnns 257
INOLES uutrrreeeeeeieeitureeetee et e e tataeeeeaeeeaaatseaeeaaeesansssseeeaaasaanssseeeeeaesaasnntseeeeeeseaansseeeeeaeesaansnreeeeanesannnnnnes 257
TSI Ko SRR 257
SWIttsLoOKupDictioNaryENTIY() «vovrveoerrereeieerireeese s st 258
1Y 1 Y 258
PULDOSE c.vvtveeere et st see e rese e es e s e e e er e s e e e e s e ne e e e R e seeee e Rt e e e e eR e e e e e e R e AR e e eR e ne e e eR e e R e e R e nr e e R e nre e renreneere s 258
INOTES +eeureeeureeeiseesseeeaseessteeaaseeaasesaseesnteeaseesnsesanseesasesanseesnseeanseesnseeansesenseesnseesnteeenseesnreesnseessenssnesn 258
SWIttSOPENPOLL() ..uocuviiiiiiiiiiiciii i s 259
1Y o [T USSP 259
PULPOSE ..ttt s 259
INOLES uutrrrteeeeeieeittteeeteeetaaiataeereaeeeaaatseeeaaaeeaantseseeeaaaeaansssseeeaaasaaansseeeeeaseaansaeaeaeaeesaansnraeeeanesannnnnnes 259
R Yo Y S 259
SWILESOPENPOLLER().vvvvvvvvvvveeeeeeeesseesesessessssssssssssssssssssssssssssssssssssssesesssssssssssssssssssssssssssssssssssssssessnesenees 260
LYY £ SRS 260
PULPOSE .ttt s 260
PATAIMIELELS treeeiieitttreeeeeeeeeiteeeeeeeseaaatseeeeeeseaaatsseeeeaaesaaasssseeeaaasaaasnsseesaassaaasnsssseesasesaansnsseesanssannnnnnns 260
INOLES uuttreeeeeeeieeittreeetee et ea i taeereaeeeaaaatseeeeaaeesastssseeeaaasaansssseeeaaesaanntseeeeeaseaansseaeeeaeesaansnraeeeanesannnnnnes 261
EXAMPIC ittt s 262
NI Yo YR 262
R G Y o LYY (Y PP UR PR TRPR 263
LYY £ S 263
PULPOSE 11ttt bbb bbb s 263
PATAIMIELELS treieiieittteeeeeeeeeeiteeeeeeeseasatreeeeeeeeaaatsseeeeaaasaaasssseeeaaasaaasnsseeeaassaaasnsssseaeasesaansnsseesanesannnnnnns 263
INOLES uutttrteeeeeieeittreeeeeeeseatataeeeeeeeeaaaatseeeaaaeeaantssseeeaaasaansssseeeaaesaannteeeeeeeseaansseeeaeaeesaansnraeeeanesannnnnnes 263
TSI] Ko SRR 263
SWILESPANZ() vvvvvvvvvvveveeeeseseessesesssssssssssssesesesssesssesssnsennes 264
LYY £ SRS 264
PULPOSE 11ttt bbb bbb s 264
PATAMIELETS 1vveeeeuureressueeeessiteeesaauteeesssaeeeeaseeeeaasseeeaasseeeeansseeeaasseeesasseeeeanseneeaansanesassnneesnseneesnnsesesnnnnnes 264
TSI] Yo TP SRR 264
SWIttsResetDiCtionary(()c.cviiiiiiiiiiiiiiiii i s 265
1Y o TSP RRURPRRRRNE 265
PULPOSE 1.ttt s 265
DN OLES uutttteereeetaeterteereessesuarae e e eeeeeaasteeeeeeeeeaaaseeaeeeaeeeeansateeeeeeeeeannteeeeeeeeeaanteaeeeeeeeaannnarareeeneeannnnnre 265
SWIttSRESOULCEAIIOCALE() .reuvirurieurirseerreesreeresressteseesseesreesreeaneesreaseesseesreesr e e reenesnesanesreesreenneenneanneans 266
PULPOSE 11ttt bbb bbb s 266
PATAMIELELS 1vvereeureeessuseeessiteeesaasteeesaseeeeeaseeeeaasseeeaasseeeeasseeeaasseeeaasnneeeanseneeansenesssseeesssenesannsesesnnnees 266
DN OLES uuttrreeeeeeieeittreeeeee et aa i taeeeeeeeeaaaatseaeaaaeesantssseeeaaasaasssseeeaaesaaansseeeeeaseaantseeeeeaeesaansnraeeeanesannnnnnes 266
TSI 1 Yo S SRRSO 266
SWIttsReSOULCEFIE@(() ...oiviiiiiiiiiiiiiiiiiiiii s 267
PULPOSE 11ttt bbb bbb 267
PATAMIELELS 1vvereeureressuseeeesteeeeaauteeesssaeeeeaseeeeaasseeeaasseeeeasseeeaasseeesassneeeanseneeaansanessnsenessnseneesnssesesnnnees 267
DN OLES uutttteereeetaeterteereessesuarae e e eeeeeaasteeeeeeeeeaaaseeaeeeaeeeeansateeeeeeeeeannteeeeeeeeeaanteaeeeeeeeaannnarareeeneeannnnnre 267
RN Yo Y S 267
SWIHESRESUIMIE () 1uouiiuiiiiiiii it s s s b s s bbb b 268
1Y o [T SRR RURPRRNE 268
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay

Programmer's Guide Table of Contents/| |

PULPOSE 11ttt bbb bbb 268

PATAINELELS 1ivuuvvrreereeeieeiureeeeeesteasiarreeeeeeseasiabasseesesesasbasaeeseassaasasaeesesssaassssaseseesseaasasssseeeesesasranneeeens 268

IN DTS tvvvururururssssasssssasssesssssnsnnnne 268

L1 Yo Y 268
SWItts SEtPArameEter(). ...ceiuiiviiiiiiiiiiiitiie s s 269
LY (G c LSRN 269
PULDOSE c.vvtveeere et st see e rese e es e s e e e er e s e e e e s e ne e e e R e seeee e Rt e e e e eR e e e e e e R e AR e e eR e ne e e eR e e R e e R e nr e e R e nre e renreneere s 269
INOLES . uvveeeeiureeeeesseesesesseeasaeseeeseassesesasseeesassesesassesesassesessasene s e stesesanseessasseeessasbenesannseesabenessanbenesanes 269

R I (o Y 271
SWWILESSPEAK() cv-ververeererreeereseeieeresee st sresre e erese et s e se et rese et e e e se et rese et e R e ne et e rene e e e r e s e e e R e nn e nrene e nre e ens 272
LY (G e LSRN 272
PULPOSE ..ttt s 272
PPATAIMIEECTS 1vvvuvurursrsrusssssassssssserssesesasnne 272

DN OTES trvturururursrsrasssesssssnsnsnne 272

TSR] Ko TP OO RROPP 273
SWILESSPEAKEX() ...ueveiiiiiii ittt bbb s bbb s s bbb 274
LY (0T [T OO O RRRRRRRPPNE 274
PULPOSE .ttt s 274
PPATAITIEECES 1vvvururursrsrarssssasssasasnne 274
Lo b 274

L1 Yo NP 276

A BT 1) () TP 277
B (0T [T URRRRRRRPPN 277
PULPOSE 11ttt bbb bbb s 277
PATAIMELELS 1iiuvvrreereeeieeiureeeeeeeteaaiarreeeeeeseasiabasseeeesesassasaeessassaasassessesssassasaseeeesseaasasssseeeesesassranneeeens 277

DN OTES tvvvurururursrsrasssssssssssesssesssssnsnnnne 277

L1 Yo NP 277

A T e o X P 278
LY (0T [T OO S URRRRRRRPPN 278
PULPOSE 11ttt bbb bbb s 278
PATAIMELELS tiiuvvrreereeeieiiureeeeeeeieasiarreeeeeeseasiabaseeesesesastasaeesesssaasasaessesssasssseeeseessenaasssseeeesesassrannneeens 278

DN OTES tvvvurururnrnsnrnsnrnsnsssssssssssssnsssssssssssssssssssssssssssssnsnsssnsnsssnsnsnsnsnsnnnsnnnne 278

L1 Yo NP 278
SPEECHIFY EMAIL PRE-PROCESSOR ..ottt aeens 280
SR S0Ye AL e (03« WUUREE OO 280
F EatULES 1uvuvururururersrsrersrsrersreressssssrarssssasssasasssasssssssssssasssssssssasssssssasssssabebs s s sssssssasssasasssasasabasabebasnsnrnsnnnns 280
(@) s L e 7. N i N7 Y 1 KSR 281
FUNCTIONALITY OF THE E-MAIL PRE-PROCESSOR.......cccovvviiiiiinnen 283
I This PAra@raPhlcccocuiiiiiiiiiiiirincee e et r e st r et e n e r e r e sr e r et 283
Supported MeSSAZE fOIMIALScceiiiiiiiiii i s 284
DEfAULt DERAVIOLuviviiiiiiiieiiitieee e e e ceecbre et e e e e eseabaeeeeeesesiasbbeeeeeeseasasbreeeesesesaaabsseseeesesasbareeesesesasrareeesens 285
Header PrOCESSINE...viiviiiiiiitiiiiiie e s 285
Discarding header Nes. ..o 285
Reading From lINES ..o s 286
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay

Programmer's Guide Table of Contents/12

Subject line abbreviationsuivciiii i 286

BOdY PrOCESSINZ.c.viiiiiiiiiiiiiri e s 286
Discardifg data .oueeeccuiiiiiiciii e s 286
Multiple punctuation Marks ... 287
Embedded e-mail MESSAZES ..vvruvrviiiiiiiiiiiiiiiiii s 287

SIGNALULE PLOCESSINZ . viiviitiiuiitiiiiii it bbb bbb 288

Y B Y B ey 0 T 288

IMOAES ..ttt bbb 289
USING THE E-MAIL SUBSTITUTION DICTIONARYccoovvviiiiiiinn. 290
In This Paragraphlcccciiiiiiiiiiiiiiii e e e 290
L T3S 3 oo P R 290
DICHIONALY ENLIIES ..ottt sr bbbt r e r e e r e 201
COomMMENTS ANA ESCAPESveuviriiiiririieiiet ettt s et sr e b e s bt e e e e s s e s b e sh e e b e s et e e e s e sresresreeresaeennenens 292
INOUFICAIONS ... e bbb e s e s a e s s ae s sae e b e ne s 292
API REFERENCE..........oiiiiiiiiiiiii s 295
I This PAta@raPhccccociiiiiiiiiiiiitiicee ettt r e s r et sa e r e r e sa e r et ene e 295
Calling COMVENTION ..ouuiiiiiiiiii ittt bbb bbb bbb 295
RESULE COUES....viiiniitiiiiicti s b et bbb e r e 296
SWIEIMAIIE() vvvvvvveerereeeseeeeeseeeeeeeeeeeseeseseeeeseseeessesseeesseeeseseseeeeessseeseseeseesssesseseeseeesseseesesseseseessseeenes 297

Mode: SYACRIONOUS . c.veiiiiitic s 297

INIOEES ettt sttt bbb e e s s b a e bR R e h e h bR a e e e R e e san s e h e e s 297
SWIEMAIIPIOCESS() .oouviiiiiiiiiiiitiii it s e bbb bbb b 298

Mode: SYNCRLIONOUS c.viitiiiiitiii et s 298

INIOEES ettt sttt bbb e e s s b a e bR R e h e h bR a e e e R e e san s e h e e s 298
SWIEMAIITEEINI() +ruveueerueerreerieriesreeseesseesree s e e reseeseesseesre e sreeaneea s e as e e ns e e sr e e s e e reaaneenesanesmeesreenneeneanneans 299

Mode: SYACRIONOUS .c.vitiitiitic e s 299
APPENDICES ... it et e e e 301
Appendix: TTSPARM mMember VAIUESccceiuiiiiiiiiiiiiii i s 301
Appendix: RealSpeak API Function DIfeCtorycooiiiiiiiiiiiiniiini e 303
Appendix: Running a TTS setver as a service (Windows 0nly)ccocevererieeinieenineneneneseeeenes 305
Appendix: Port density SIMULALOL.cooiiviiiiiiieeie e e 306
Appendix: Copyright and Licensing for third party SOftwareccocevviiirieniieienne e 307

ADAPTIVE Communication Environment (ACE)cccocviiiiiiiiiiiiiis s 307

APACHE GIOUP 1ttt bbb bbb s r e 309

The Flite Speech Synthesis SYSEMm ..ouiiiiiiiiiiiiii s 310

Dinkumware C++ Library for Visual CH+ .o 310

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay

Programmer's Guide Table of Contents/I3

(1 310
PCRE .ot e bR bbb 311
Appendix: RealSpeak LangUAaZEscccvviiieiiiiiiiiiie it 313
Appendix: Tips for using RealSPeakccociiiiiiiiiiiiiiiiiiciseee e e 315
Operating System ReStEICHONS .uurviiiiiiiitiii i s 315
Optimal AUIO BUFFEL SIZE .vvvveerrrieeirrireciriisreer e 315
Limiting delays when internet fetching is Usedcccovviiiiiiiiiiiiii s 315
Binary versus textual uset diCHONATIES wouvirirreerrirreirerre s 316
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay

Programmer's Guide Table of Contents/14

RealSpeak Telecom
Sottware Development Kit

Chapter 1

Introduction

Programmer’s Guide

Chapter |

Introduction

Introduction

Introduction to RealSpeak

This guide provides operational instructions for the RealSpeak
Telecom Text-To-Speech (TTS) system. It reviews the functionality
of the system and explains how the various APIs can be used to
integrate TTS into an application, and describes the ways in which the
user can customize the pronunciation of input texts.

Organization of this manual

The following table shows the organization of this manual:

Chapter I: Introduction describes this guide and the technical
support services for the RealSpeak TTS product.

It also explains the architecture of the TTS system and the new
features of the RealSpeak v4 release.

Chapter II: Installation explains how to install the SDK and
configure the license protection.

Chapter III: Deploying RealSpeak describes the use of the API
for various system configurations, illustrated by a discussion of the
demonstration applications.

Chapter IV: RealSpeak API contains a detailed explanation of all
the API functions, data structures and type definitions.

Chapter V: SAPI5 Compliance describes the support for the
Microsoft SAPI5 interface.

Chapter VI: SSML Support describes the support for the XML-
based SSML v1.0 markup language.
RealSpeak extends SSML with a number of Scansoft specific

elements/attributes. The set supported by Scansoft is called
“ScanSoft SSML” (4SML).

Chapter VII: Language Identifier describes the language identifier
component and his API.

Chapter VIII: User Configuration describes the different ways in
which a user can tune RealSpeak. It describes User Dictionaries, User

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter I/16

Chapter |

Introduction

Rulesets, Custom G2P dictionaries, Custom Voices and
Configuration Files.

Chapter IX: RealSpeak Email Pre-Processor

Chapter X: Speechify API describes the support for the SWltts API
of Speechify 3.0. This support eases the migration of existing
Speechify based integrations and applications to the next-generation
RealSpeak products that incorporate Speechify technology. New
software should only be developed using the native RealSpeak APIs
or the Microsoft SAPI 5 APIs, however.

Chapter XI: Speechify Email Pre-Processor
The appendices provide additional information for using the SDK.

They cover such topics as “RealSpeak API Function Reference”,
“Running a TTS Server as a Service”, “RealSpeak Languages” etc.

Contacting ScanSoft

Defect Report Form

ScanSoft wants you to get the most from its software. To receive
technical support from ScanSoft, Inc., visit
http://developet.scansoft.com.

This site requires a customer username and password.

You can also visit http://www.scansoft.com for general corporate,
product, marketing, and sales information.

If you believe that you have found a defect in the RealSpeak Telecom
software, please contact technical support using the contact
information provided above. In reporting the problem you must
supply all of the information described in the defect report form,
which is provided as a plain text file named
DEFECT_REPORT_FORM on the product CD. The easiest way to
use the form is to copy the text from the form into an email and send
it to technical support along with any required attachments.

System Overview

Introduction

This section desctibes:
e API Support

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter I/17

Chapter |

API Support

Markup Support

Product Support

Introduction

Markup Support
Product Support
New features of RealSpeak v4

The input/output behavior of RealSpeak: the different input
mechanisms and audio streaming

The modes of operation: in-process and Client/Setver
Use of RealSpeak in telephony environments

RealSpeak Telecom V4.0 supports the following API’s:

New RealSpeak Telecom 4.0 API

Old RealSpeak Telecom 3.51 API

Microsoft SAPI 5

Speechify 3.0 API: RealSpeak Telecom almost fully supports
the SWltts API of Speechify 3.0. This support eases the
migration of existing Speechify based integrations and
applications to the next-generation RealSpeak products that
incorporate Speechify technology. New software should only
be developed using the native RealSpeak APIs or the
Microsoft SAPI 5 APIs, however.

The input text can be marked up to control aspects of the generated
speech such as voice, pronunciation, volume, rate, etc.
RealSpeak supports several markup languages:

The RealSpeak native markup language which is explained in
the language specific User’s Guide of each RealSpeak
language.

W3C SSML v1.0 (XML-based) with some proprietary
extensions, called 4SML. This is described in the “SSML
Support” chapter.

SAPI v5 XML tags. The support for SAPI is described in the
“SAPI5 compliance” chapter.

The RealSpeak API supports two markup languages: the native one
and 4SML (SSML with some proprietary extensions). The same
markup languages are supported when the Speechify API is used.
SAPI5 tags are supported when the SAPI interface is used.

RealSpeak Telecom V4.0 can be used with the following
SpeechWorks Solutions from ScanSoft:

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter I/18

Chapter |

Introduction

e SWMS3.1
RealSpeak Telecom V4.0 has been used for integration in our
MRCP product line, SWMS 3.1. For more information please
read the SWMS 3.1 documentation or visit
http://developet.scansoft.com

Input/Output behavior of RealSpeak

Three different text input techniques

The input text can be provided by the application in three ways: as an
input stream, a document specified via a URI or a text buffer.

The input stream method relies on the use of the TTS source call-
back function, implemented by the application. This function is
called by the RealSpeak engine when it needs to receive a next block
of input text. Figure I-1 illustrates this mode of input. RealSpeak
v3.5 supported only this input technique.

The input can also be specified as a document specified via a URI.
RealSpeak supports documents on an HTTP server and local files.
Figure 1-2 illustrates this mode of input. This method is particularly
useful in Client/Setver configurations with multiple servers: the input
texts can be stored on a central Web server. RealSpeak supports
caching of the retrieved documents and use of a proxy server.

The third input way is to provide a text buffer when the TTS Process
function is called.

Presentation of the input text

The input text can be marked up to control aspects of the generated
speech such as voice, pronunciation, volume, rate, etc.
As already described under the “Markup Support” section above,
RealSpeak supports three markup languages:

e The RealSpeak native markup language

e W3C SSML v1.0 with some proprietary extensions, called

4SML
e SAPI v5 XML tags

RealSpeak supports a wide range of character sets and encodings.
The engine handles the transcoding of the input text to the native (ot
internal) character set of the active language.

Language and voice switching

The active language and voice can be specified when a TTS engine
instance is initialized, in-between the initialization and the TTS
request, or during the processing of input text (via the markup). The
voice and language can be switched at any location in the input text
but will result in a sentence break.

Audio output streaming

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter I/19

Chapter |

Introduction

The audio output is streamed to the application via the Destination
call-back. This is a handler implemented by the application which
receives the audio chunk by chunk. The application can specify the
desired audio format (A-law, mu-law, 16-bit linear etc).

Modes of operation: in-process and Client/Setver

ScanSoft RealSpeak Telecom can operate in client/setver and in-
process (or single process) mode.

In-process mode

For in-process mode the RealSpeak service is fully implemented by
libraries (primarily DLL’s or shared objects) linked in by the user’s
application. All TTS components are then running in the same
process, so there is no communication overhead.

Figure I-1 shows an example system layout of an application using
RealSpeak in-process. Only one RealSpeak voice, being American
English Jill, has been installed on the machine. The application has
created one RealSpeak engine instance via the RealSpeak API. The
tigure shows that the application has chosen to provide the text input
via the TTS source call-back. In that case the input text is streamed
to the RealSpeak engine instance. The audio streams in the opposite
direction from the engine instance back to the application.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 1/20

Chapter |

Figure I-1

Introduction

Linux machine

Welcome to ScanSoft's text o
Text To Speech sample - appllcatlon
Program.

module using
RealSpeak

audio ¢ text Taudio

1
-
RealSpeak API
O .
¢ text Taudio
— ,

-
H

RS instanc

— >

-—-
Am. English Jill
database

When the application specifies the text input for a Speak request via a
URI, the architecture looks like Figure I-2. In that case, the
RealSpeak instance will rely on the Scansoft internet fetch component
to retrieve the content of the URL. Note that this is a simplified
presentation of the internet fetching: in reality the fetch library uses a
configurable cache, so the overhead of retrieving previously
downloaded documents is minimal.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 1/21

Chapter |

Figure I-2

Introduction

Ll

-
Linux machine
Document Server
o HTTP harpo
application Get re-
quest HTTP server
module using (URI=)| -
RealSpeak o Welcome to
RealSpeak.
A
. URI=x Taudio
audio J
RealSpeak API
Z Willkommen bei der
L n Demonstration des
= audio Sprach-Synthese-
VURI X System.
(O]
2
2y
2]
£
= A
VURI X doc
Internet fetch
lib
HTTP
Get x=http://harpo/realspeak/
\4 res- demo_us_english.txt
Am. English Jil ponse
database (text)
~—

Client-Server mode

In client/server mode the lightweight RealSpeak client is integrated
into the user’s application that needs TTS services. The client
implements the RealSpeak API layer and each RealSpeak client
instance created via the API can be used to send TTS requests to a
certain RealSpeak server.

The RealSpeak server (also called TTS server) is a standalone
executable that can be started from the command line or, on
Windows, as a Windows service. The server can reside on any
machine on the network. and clients and servers do not have to run
on the same operating system. A server instance is created when a
client instance is created and they are connected for their entire life
span. A server instance performs the actual TTS conversion and

RealSpeak Telecom SDK V4.0

Programmer's Guide

December 2005 ScanSoft Proprietary

Chapter 1/22

Introduction

Chapter |

sends the generated speech to the corresponding client instance. The
client instance then passes it back to the application.

The TTS Server can create multiple server instances and each instance
runs in a separate thread; so each RealSpeak server can handle
multiple requests (one per instance) simultaneously.

A TTS server instance can handle TTS requests for all the RealSpeak
languages and voices that have been installed on the server machine.
And there is no hard limit on the number of languages and voices
that can be installed on a single server machine.

The client instance tells the server which initial language, accent
and/or voice to use for the next TTS request. Note that the input
text for the TTS request can contain markup to switch the language
and/or voice.

Multiple TTS server processes (or machines) can work with multiple
clients (or applications).

RealSpeak is fully multi-threaded, and so can run on multiple CPU
machines very efficiently.

Figure I-3 shows a snapshot of an example system layout with a client
on a Linux machine that is connected with one of two available
servers: one running on a Windows and one on a Linux machine.
The example Linux server has the availability of two RealSpeak
voices: American English “Jill” voice and British English “Emily”
voice. The figure shows a snapshot of the situation at time x. Before
that time, the application has used the RealSpeak API to create a
RealSpeak server engine instance #1 on the Linux server and a client
instance #1 on the application machine connected with the server
instance. Note that RealSpeak only allows one client instance to be
connected with one server engine instance for the life span of the
client instance.

After the successful initialization of the server and client instance, the
application has requested the client instance to convert an American
English text to speech.

Note that the active language and voice can be specified when the
engine instance is initialized, in-between the initialization and the TTS
request, or during the processing of input text (via the markup).
Figure I-3 shows a snapshot while the server engine instance is
performing TTS for an American English document. The figure
shows that the application has chosen to provide the text input via
the TTS source call-back. In that case the input text is streamed to
the server engine instance via the client instance. The audio streams in
the opposite direction from the server engine instance back to the
application via the client instance.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1/23

Introduction

Chapter |

-
Linux server
TTS
Am. server
English
text
RS server
engine
)) instance#1
Linux machine
text —
Welcome to » application
RealSpeak.
_ ——
module using
RealSpeak database
[— . text A audio g 9
audio Y = ——
.
@ RealSpeak API database
© A
y .
text audio
Y
H .
** Windows server
z
Q <
5 -
%)
x audio TTS
server
~—

_
Japanese Kyoko
database

-

German Steffi
database

Figure I-3
When at a later point in time, a German text needs to be processed,
the application must create an engine instance on the Windows server
since the Linux server has not been equipped with a German voice.
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter 1/24

Chapter |

Introduction

The application has the option to keep client instance #1 and
corresponding server engine instance #1 for TTS processing of future
American or British English texts. In any case, a new server engine
instance #2 has to be created on the Windows server; followed by the
creation of a client engine instance which is connected to that server
engine instance. Figure I-4 is a snapshot of the processing of the
German text.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 1/25

Introduction

Chapter |

Linux machine

TTS
server

RS server
engine
instance #1

Linux machine

text

Willkommen zur - application
TTS Demo. o

—
Am. English Jill
database
—

N
Brit. English Emily
database

module using
RealSpeak

A

text audio

audio h J

RealSpeak API

y T audid

0]

—
D
x
-~

il

LAN

Windows server

RS client #1

RS client #2

audio

TTS

German server
text

RS server
engine
instance #2

_
Japanese Kyoko
database

-

German Steffi
database

Figure I-4

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1/26

Chapter |

Introduction

Use of RealSpeak in telephony environments

There are three components to any telephony application using
speech technology:

e The main application

e The Voice Source

e The Engine

The main application is the brains of the entire system and is
responsible for the overall setup and control of the speech engines
and Voice Sources. The main application is the master of the system;
the Voice Source and the Engine are slaves to the main application.
The Voice Source is the point at which voice input or output occurs
in the telephony application. In traditional telephony applications, the
point of entry is the telephony voice board, and the Engine is the
speech Engine (Text-To-Speech and/or Speech Recognition). This
Engine can be running on a different machine.

Telephony applications are designed to service many customers at the
same time. The concept of “voice port” is often used in this domain.
Each voice port can service one customer at a time. One port is
usually associated with one telephone line.

There are two major system models, loosely relating to the number of
nodes (computers) that these pieces are running on:

e Single Node — In a single node system, or in-process model,
all components are running on the same computer. This is
the typical configuration in small systems handling a small
number of lines. In the single node system, all voice data can
be routed between the Voice Source and the Engine through
the main application with no network overhead. Figure I-1
and I-2 closely match this configuration. The application will
stream the audio output by the RealSpeak engine to the
Voice Source. Typically, one RealSpeak engine instance will
serve one port.

e Two Node — In a two-node system, or client-server model,
the main application and the Voice Source are located on one
computer and the Engine is located on another. This
configuration allows the application to offload the heavy
Engine processing, allowing the main application to handle
more ports on a single machine. Separating the Engine
creates a modular system that is more fault-tolerant, flexible,
and manageable. In this system, the application can still be
the middleman streaming all voice data between the Engine
and the Voice Source.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 1/27

Chapter |

Introduction

New features for RealSpeak 4.0

The functionality of the TTS system has been improved compared to
the previous release (v3.5x). The ScanSoft RealSpeak SDK has the
following new and changed features for V4.0:

Support for new RealSpeak v4.0 API while maintaining
support for RealSpeak v3.5 API

SAPI 5 and Speechify v3 API support come as an integral
part of the SDK

New Improved User Dictionary Editor. Windows only.
Allows saving to other platform types

Improved SSML support
0 Support for <audio> element to allow for easy
insertion of prerecorded audio files.
0 Support for SSML 1.0 Recommendation of
September-2004

Language identification module has been added

Extended API functions that support new methods for
specifying the input of the Speak. Before, the TTS source
call-back (input streaming) was the only input method.

0 Text input can now also be specified via a URI with
optional fetch properties and cookie jar. Fetch
properties can be especially handy in case of remote
input data (e.g. for specifying a fetch timeout).

0 Input can also be provided via a text buffer.

0 When one of two above input methods is used, the
content type and character set of the input can be
specified. The content type specifies the document
type: “standard” (use of native markup) versus 4SML
(or SSML).

This version supports a wide range of character
encodings; RealSpeak now handles the transcoding
of the input text to the native (or internal) character
set of the active language.
Extended dictionary loading functionality, accessible via new
API function

0 Load from URI with optional content-type, fetch
properties and cookie jar

0 Load from a memory block

Support for multiple active user dictionaries with user
specified priorities
0 With the new API functions dictionaries are
specified per TTS instance
Introduction of license protection: a floating licensing
scheme is in use

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 1/28

Introduction

Chapter |

e Extending the number of parameters that can be changed via
the API once a TTS instance is created: sample frequency,
language, voice, etc. More than one parameter can be
switched at a time.

e Supportt for the signaling of the following types of markers
via the Event callback: user bookmarks, paragraph!, sentence,
word and phoneme markers

1 Paragraph markers are only signaled when paragraphs have been marked in the input
text via the paragraph tag (native <ESC>\p\ tag or SSML <p> element).

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1/29

RealSpeak Telecom
Sottware Development Kit

Chapter 11

Installation Guide

Programmer’s Guide

Chapter |l

Installation Guide

Installation Guide

Licensing

Licensing - Important note

RealSpeak Telecom requires a valid license file to perform TTS
services. This license file is NOT supplied with the software but can
be obtained from Scansoft.

Overview of licensing

RealSpeak Telecom uses run-time licensing that is based on the
number of initialized TTS engine instances, and is co-resident with
LAN based licensing servers. RealSpeak uses the “Flex License
Manager” (FLEXIm) third-party software to implement a floating
license model, so licenses are not required to be dedicated to a
specific RealSpeak server (or RealSpeak machine for in-process
mode). Instead, one license is needed per active TTS instance,
regardless of the machine it is running on. There are two floating
licensing modes: implicit (the default) and explicit.

Implicit licensing means that licenses are acquired automatically
when a TTS engine instance is created via the Ttslnitialize(Ex) API
function and released when the instance is destroyed via
TtsUninitialize.

To supportt explicit licensing, the functions TtsResourceAllocate
and TtsResourceFree were added to the API. These functions enable
the developer to choose when he wants to acquire and release
licenses.

To configure the licensing to explicit or to implicit mode, an
environment variable can be set. The values for this variable
(SSFT_TTS_LICENSE_MODE) can be ‘default’ or ‘explicit’ where
‘default’ means implicit mode. When the environment variable is not
defined, the default or implicit mode will be used.

In client/server mode, licenses are acquited by the TTS setrver and
the default license mode can then be set via the license_mode
parameter in the server configuration file.

But the application can override the default setting via
TTS_LICENSE_MODE_PARAM parameter which can be set when
a TTS engine instance is created, or via SetParam(s).

An application can determine the mode by calling TtsGetParam using
TTS_LICENSE_MODE_PARAM as name for the parameter. See

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter II/31

Installation Guide

Chapter |l

the TtsSetParam entry in the “RealSpeak API” chapter for the
possible values of this parameter.

The FLEXIm components are part of the RealSpeak Telecom
installation package.

A FLEXIm license server must be set up on a machine on the same
logical subnet as the RealSpeak servers or machines in case of in-
process RealSpeak. The document
“./doc/RS_Telecom_TTS_Licensing Handbook.pdf” under the
Realspeak installation directory describes the licensing in great detail.
It explains how to obtain and manage licenses and how to install and
configure a license server. Note that this document refers to the in-
process mode of RealSpeak as “all-in-one”.

Some Windows and Linux specific details are also described in the
following Installation sections.

Installation on Windows

Realspeak for Windows can be run on Windows 2000, Windows XP
Professional (client or in-process mode only) and Windows Server
2003.
The installation of RealSpeak Telecom 4.0 is a very straightforward
process that consists out of two major steps: common install and
voice specific install. Both installers consist of a limited number of
input screens which makes it possible for the user to provide the
necessary information and to configure the SDK.
The common installer gives the user the opportunity to:

e Configure the install directory

e Install the license server

e Install RealSpeak Telecom as a windows service.
The voice specific installer uses the information retrieved during the
installation of the common part to determine the target path of the
voice specific installer.

Installation Steps for Windows

Install the common installer

‘Startup’ screen

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 11/32

Installation Guide

Chapter |l

Welcome to the InstallShield Wizard for
RealSpeak 4.0

0 el bt The Installshield{R) Wizard will install Realspeak 4.0 on your
SPEEEhWMIG solutions computer. Ta conkinue, click Mext,

from ScanSoft

WARMIMNG: This program is protected by copyright law and
international treaties,

= Back

Click ‘Next’ to continue.

‘Custom Setup’ screen

il RealSpeak 4.0 - Installshield Wizard

ustom Setup

Select the program Features you want installed.

Click on an icon in the list below o change how a Feature is installed.

—Feature Description

5v " " This feature installs RealSpeak.
(= ~ | 3rd Party Licensing Components N e —————

This feature requires 24MB on
vour hard drive.

Install ko

C:1Program Files\ScanSoftiRealSpeak 4,00 Change... |
ImstallShield
Help | Space | < Back I Mext = I Cancel |

Here you can specify which components you want to install. You can
install the common part and the third party licensing software
(FLEXIm). Next to that you can also specify the installation path

Click ‘Next’ to continue.

‘Host service’ screen.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 11/33

Installation Guide

Chapter |l

i‘._% Realspeak 4.0 - InstallShield Wizard

Real5peak Host service)
e sodutiang

tpancha :
from SEansoll

¥ Install the RealSpeak Host service

ImstallShield

< Back

Zancel |

Here you can specity whether you want the TTS server installed as
Windows Service or not. Uncheck the box if you do not want the
service installed. When checked, the TTS service will be installed with
startup type ‘automatic’ (starts automatically when the Windows
system starts). Note that the service’s options can be changed later
via the “Windows Control Panel” by selecting “Administrative
Tools/Services/RealSpeak Host".

Click ‘Next’ to continue

‘Ready to install’ screen.
il RealSpeak 4.0 - Installshield Wizard

Ready to Install the Program

tpancherl’ soltion:
The wizard is ready ko beagin installation, from SEansoll

Click Install ko begin the installation,

IF wou wank to reviews or change any of wour inskallation settings, click Back, Click Cancel to
exik the wizard,

ImstallShield

< Back Inskall Cancel

The setup is now ready to install the selected components.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 11/34

Installation Guide

Chapter |l

Click ‘Install’ to continue.
The installer will now install all the selected components.

‘Finish’ screen.
iiél- RealSpeak 4.0 - Installshield Wizard x|

InstallShield Wizard Completed

The InstallShield Wizard has successfully installed RealSpeak.

SpeechWorks® solutions 4.0, Click Firish to ext the wizard.

from ScanSoft’

Zancel

= Back

Click ‘Finish’ to complete the installation.

Install the voice specific installer

Repeat the following for every voice that needs to be installed.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 11/35

Installation Guide

Chapter |l

‘Startup’ screen
iie!rl' 4.0 - English en-US Jennifer - Installshield x|

Welcome to the InstallShield Wizard for
RealSpeak 4.0 - English en-US Jennifer

The InstallShield(R) Wizard will install RealSpeak 4.0 - English

Spee:h\\'nrks' solutions en-U3 Jennifer on your computer, To conkinue, click Mext,

from ScanSoft’

WARNING: This program is protected by copyright law and
inkernational treaties,

= Back Zancel

Click ‘Next’ to continue.

‘Ready for installation’ screen.
i RealSpeak 4.0 - English en-US Jennifer - InstallShield

Ready to Install the Program

sollions
The wizard is ready ko begin installation. fom SE3

Click Install ko begin the installation,

IF wou wank to review ar change any of wour installation settings, click Back, Click Cancel ko
exit the wizard.

Installshield

< Back Inskall Zancel
The setup is now ready to install the selected components.
Click ‘Install’ to continue.
The installer will now install the selected voice.
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter 11/36

Chapter |l

Installation Guide

‘Finish’ screen.

SpeechWorks®” solutions

fi# RealSpeak 4.0 - English en-US Jennifer - InstallShield x|

InstallShield Wizard Completed

The InstallShield Wizard has successfully installed RealSpeak.
4,0 - English en-U3 Jennifer. Click Finish ko exit the wizard,

from ScanSoft’

Zancel

= Back

Click ‘Finish’ to complete the installation

Configuring the licensing

Please consult the document

“./doc/RS_Telecom_TTS_Licensing Handbook.pdf” under the
Realspeak installation directory for detailed information on licensing.
In a nutshell, here's the procedure for installing a FLEXIm license
server on Windows. The license server can also be installed on a
Linux machine.

2)

Determine the hostid of the Windows license server
In order to generate a license, Scansoft requires the hostid
(Ethernet address for Windows) of the machine that will run
the license server. The hostid can be obtained as follows:
0 change to the directory
%SSFTTTSSDK %\ flexlm\ components
0 and run:
Imutil.exe Imhostid
Use the returned hexadecimal digit string to obtain your
license file from the Scansoft and place it on your system.
Consult the Licensing Handbook, section “Obtaining and
managing licenses, subsection “Generating licenses and
downloading license files” for the details.
Install and Configure the license server
By default, the license software has already been installed
when installing RealSpeak on a Windows machine.
Also by default the installation will configure the “RealSpeak

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 11/37

Chapter |l

d)

Installation Guide

Licensing Service” to start automatically with every system
reboot. Consult the Licensing Handbook, section
“Configuring and starting the license server” for the details.
Configure the RealSpeak server to use the appropriate license
server

Consult the Licensing Handbook, chapter “Configuring
Licensing on Windows”, section “Configuring RealSpeak on
Windows” for the details. When using RealSpeak in
client/server mode this includes updating the RealSpeak
server configuration file variables license_mode and
license_servers.

When using RealSpeak in in-process mode, the only option is
to set the environment variables
SSFT_TTS_LICENSE_MODE and
SSFT_TTS_LICENSE_SERVERS to appropriate values.

Running a demo program

For demonstration purposes, RealSpeak comes with several
applications. The simplest one is the “standard” program.

This can be run to do a quick verification of the installation.

It runs RealSpeak in-process. It processes one text file which can
contain RealSpeak native markup for the specified language. The
output is one linear 16-bit PCM speech file (with 8kHz sample rate)
named “standard.pcm”. It is explained in more detail in Chapter 111,
section “In-process use of RealSpeak”, subsection “Demonstration
applications”.

Instructions

Go to the RealSpeak installation directory, e.g. "C:\ program
files\ScanSoft\RealSpeak 4.0" and open a command prompt.
It should be run as follows:

standard <language> <voice> <engine directory> <text
file>

Running the program without arguments shows a help
screen)

e.g.

standard.exe "American English" Jennifer .\speech
Aapi\demos\data\us_english.txt

If the program returns with error 120, it means that TTS
could not acquite a license. You should check your license
configuration.

If no error is returned everything went fine and a PCM file
called standard.pcm is generated.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 11/38

Installation Guide

Chapter |l

Installation on Linux

The RealSpeak SDK for Linux RedHat 7.1, 7.2 and 9.0, Linux
RedHat Advanced Server 2.1 and 3.0, Linux RedHat Enterprise WS
3.0, Linux RedHat Enterprise ES 3.0.

RealSpeak Telecom is distributed in RPM format.

The “API install CD” comes with two RPM files, one for the
RealSpeak common components (including the API libraries) and one
for the licensing components.

A “voice install CD” comes with one RPM file which is voice
specific.

The default location of the install is /ust/local/ScanSoft/RealSpeak_4.0.
You need to be root or have su permissions to install the software.
The API RPM must be installed first. The RPM's are relocateable.

NOTE: If you do relocate the common components RPM, be sure to
relocate any subsequent voice RPM to the same directory.
Please see the RPM man pages for additional options.

Installation Steps for Linux

Step 1: Install the common components

Insert the API install CD into the CD drive and mount the drive.
rpm -i rs-api-4.0-0.1386.rpm

This will install the RealSpeak common components to the default
directory /ust/local/ScanSoft/RealSpeak_4.0

Step 2: Install the purchased voices
rpm -i rs-<full-voice-spec> -4.0-0.1386.rpm

where <full-voice-spec> is the full specification of the voice to be
installed, e.g. American-English-en-US-Jennifer.

Step 3: Install the licensing components
rpm -i rs-lic-4.0-0.1386.rpm
Step 4: Configuring and starting of the licensing

Please consult
/ust/local/ScanSoft/RealSpeak_4.0/doc/RS_Telecom_TTS_Licensi
ng_Handbook.pdf for detailed information on licensing.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 11/39

Installation Guide

Chapter |l

In a nutshell, here's the procedure for installing a license server on
Linux. The license server can also be installed on a Windows
machine.

e) Determine the hostid of the Linux license server
Before TTS can be performed, a RealSpeak engine instance
requires a license. In order to generate a license Scansoft
requires the hostid (Ethernet address for Linux) of the
machine that will run the Flex License Manager. The hostid
can be obtained as follows:
0 open a terminal and run:
/sbin/ifconfig eth0
0 from the output copy the numerical string following
HWaddr, e.g.,
00:06:5B:84:28:00
0 remove the colons, e.g.,
00065B842800
f) Use this number to obtain your license file from Scansoft.
Consult the Licensing Handbook, section “Generating
licenses and downloading license files” for the details.

@) Start the license server

0 -once you've received the license file, rename it to
“realspeak.lic” and copy it to
/ust/local/ScanSoft/RealSpeak_4.0/flexlm/components

O to manually start the license manager run:
./Imgrd -c realspeak.lic

0 to stop the license manger, open a new terminal and
run:
./Imutil Imdown -c realspeak.lic

0 there is also the possibility to launch the license
server automatically (see Licensing Handbook)

Step 5: Updating your environment settings

e Set the SSFTTTSSDK variable to point to the RealSpeak
install directory, the default location is
'/ust/local/ScanSoft/RealSpeak_4.0'".

e.g. when using the C shell:
setenv SSFTTTSSDK /ust/local/ScanSoft/RealSpeak_4.0

e Update the PATH environment variable to include:
$SSFTTTSSDK/speech/components/common and
/api/lib
e.g. when using the C shell:

% setenv PATH

$SSFTTTSSDK/ speech/components/common:$PATH
% setenv PATH
/ust/local/ScanSoft/RealSpeak_4.0/api/lib:$PATH

e Update the LD_LIBRARY_PATH environment variable to
include:
/ust/local/ScanSoft/RealSpeak_4.0/speech/components/c
ommon and

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 11/40

Chapter |l

Installation Guide

/ust/local/ScanSoft/RealSpeak_4.0/api/lib

e.g.

% setenv LD_LIBRARY_PATH
/ust/local/ScanSoft/RealSpeak_4.0/speech/components/c
ommon:§L.D_TLIBRARY_PATH

% setenv LD_LIBRARY_PATH
/ust/local/ScanSoft/RealSpeak_4.0/api/lib/:$L.D_LIBRAR
Y_PATH

On Redhat AS/ES 3.0 or Redhat AS/ES 4.0 you MUST set
the environment variable LD _ASSUME_KERNEL to the
value 2.4.19. It's imperative to choose this value on the
mentioned Redhat versions.

e.g.
set%nv LD_ASSUME_KERNEL 2.4.19
Configure the RealSpeak server to use the appropriate license
server(s)

When using RealSpeak in in-process mode, set the
environment variables SSFT _TTS_LICENSE_MODE and
SSFT_TTS_LICENSE_SERVERS to appropriate values.
Note that when using RealSpeak in client/setver mode the
licensing is configured via the license_mode and
license_servers parameters in the RealSpeak server
configuration file.

Consult the Licensing Handbook, chapter “Configuring
Licensing on Linux”, section “Configuring RealSpeak on
Linux” for the details.

Step 6: Running a sample program

For demonstration purposes, RealSpeak comes with several
applications. The simplest one is the “standard” program.

This can be run to do a quick verification of the installation.

It runs RealSpeak in-process. It processes one text file which can
contain RealSpeak native markup for the specified language. The
output is one linear 16-bit PCM speech file (with 8kHz sample rate)
named “standard.pcm”. It is explained in more detail in Chapter 111,
section “In-process use of RealSpeak”, subsection “Demonstration
applications”.

Instructions

Open a terminal and change to the RealSpeak installation
directoty, e.g. /ust/local/ScanSoft/RealSpeak_4.0

Make sute you have 'write' access in this dir (you must have
root privileges):

% chmod +w .

Give the demo program executable rights (or any other demo
program) :

% chmod +x standard

Run the standard program as follows:

standard <language> <voice> <engine directory> <text

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 11/41

Chapter |l

Installation Guide

tile>

Running the program without arguments shows a help
screen)

e.g.

% ./standard "American English" Jennifer ./speech
./api/demos/data/us_english.txt

If the program returns with error 120, it means that TTS
could not acquire a license. You should check your license
configuration.

If no error is returned everything went fine and a PCM file

called standard.pcm is generated.

Environment variables

Before running RealSpeak the following environment variables
should be set whatever operating system is used. Some variables are
optional, some are only needed on systems running the TTS server or
running TTS in-process. Unix specific environment variables are
described in the “Installation on Unix” section, subsection
“Installation Steps for Linux”.

Name

when

Comments

SSFTTTSSDK

always, optional

RealSpeak install directory, on Windows the
default location is "C:\program
files\ScanSoft\RealSpeak 4.0". On Unix it is
'/ust/local/ScanSoft/RealSpeak_4.0'.

When using the TTS server, it can be
overwritten in the server configuration file.
It can also be specified when a TTS engine
instance is created.

PATH

always, required

Add
$SSFTTTSSDK/speech/components/common
to the PATH.

TTS_LICENSE_MODE

in-process,
optional

License mode

Possible values: default or explicit.

Default value: default

Value ‘default’ means implicit licensing.

Note that when using RealSpeak in
client/server mode the license mode is
configured via the license_mode parameter in
the RealSpeak server configuration file.

See the Licensing Handbook for more details.

SSFT_TTS_LICENSE_SERVERS | in-process,

Port number and hostname of one or more

optional license server machines.
Value: semi-colon separated list of <port-
number> @<hostname>
Default value: 27000@localhost
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide

Chapter 11/42

Installation Guide

Chapter |l

Note that when using RealSpeak in
client/server mode the list of license servers is
configured via the license_servers parameter in
the RealSpeak server configuration file.

See the Licensing Handbook for more details.

RealSpeak Components

The RealSpeak System is made up of a number of components. This
section gives a brief overview of those components. All components
are installed in the RealSpeak installation directory or one of its
subdirectories. Since the installation directory is usually specified via
the SSFTTTSSDK environment variable, this variable is used in the
following text when specifying path names.

RealSpeak API library

The RealSpeak interface to the TTS system is implemented as a
shared object or DLL (with accompanying importt library), depending
on the platform.

For example, on Windows, the RealSpeak API library is named
lhstts.dll (with corresponding import library lhstts.lib) and on Unix
Ihstts.so.

This is the only library the application is required to link in or
explicitly load in order to use the TTS functionality.

In Client/Server mode, the API library communicates with the TTS
Server, which in turn loads the underlying TTS engine library, which
with the help of the language libraries, does the actual TTS
conversion. In in-process mode, the API library loads the TTS
engine library directly.

Note that RealSpeak v4 comes with a number of additional API’s:
SAPI5 API (see “SAPI5 Compliance” chapter) and Speechify API
(see “Speechify API” chapter).

TTS API support libraries

The TTS API uses several shared support libraries, like for example
the Internet fetching library used to retrieve documents on an HTTP
server. These libraries are DLLs for Windows and shared objects for
most Unix platforms.

These libraries reside in the “./speech/components/common”
subdirectory of the RealSpeak installation directory. On Windows,
this subdirectory is automatically added to the path environment
variable by the RealSpeak common installer.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 11/43

Chapter |l

TTS server

Installation Guide

The libraries ate used by the TTS API, the TTS engine, the language
libraries and the TTS Setver (see below).

The TTS Server is a standalone executable that provides TTS services
to applications using the TTS Client/Server mode of the APIL. The
TTS Server executable is called ttsserver.exe on Windows, and
ttsserver on all other operating systems. The RealSpeak Telecom
installer installs it in the top-level of the RealSpeak Telecom
installation directory.

The server can reside in any location on any machine on the network.
The TTS Server depends on certain shared support libraries (see the
previous section).

Engine and language libraries

Demo programs

The RealSpeak TTS engine and language libraries are implemented as
shared object files or DLLs, depending on the platform. Both the
TTS API library and the TTS Server dynamically load the TTS engine
library which in turn loads the language libraries when they are
needed to execute TTS requests.

The SDK includes a number of demo programs. Detailed
instructions on how to run them are provided in the “Deploying
RealSpeak” chapter and the Product Release Notes for your particular
version.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 11/44

RealSpeak Telecom
Sottware Development Kit

Chapter 111

Deploying RealSpeak

Programmer’s Guide

Deploying RealSpeak

Chapter |l

Deploying RealSpeak

Introduction

This chapter explains how to deploy the RealSpeak system.
RealSpeak can be operated in a number of different ways, each suiting
a particular type of deployment. First the in-process operation mode
of RealSpeak is described. Then the client/server mode is explained.
Although the RealSpeak client(s) and setver(s) can be executed on the
same computer, greater efficiency can often be achieved when the
client(s) and server(s) are executed by different computers connected
via a network.

When performing Text-To-Speech a number of parameters can or
must be set. The “RealSpeak Parameters” section of this chapter
explains the different classes of parameters and how and when they
can be set.

The final section “Use of RealSpeak in telephone or dialogue
applications” describes the typical, often more complex use of
RealSpeak Telecom in telephony environments.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 111/46

Deploying RealSpeak

Chapter |l

In-process use of RealSpeak

Intro

API Call Sequence

The simplest configuration comprises of an “in-process” use of
RealSpeak. This has already been explained in the “System Overview”
section of the Introduction chapter and figures I-1 and I-2 illustrated
this configuration.

The application designer links the TTS API Library to the application
requiring TTS. The TTS server standalone program is not used at all;
all Realspeak libraries will be directly or indirectly loaded into the
application.

For demonstration purposes, RealSpeak comes with several
applications demonstrating this configuration; these are described
below, but first some typical API call sequences are shown.

The following call sequence shows how to use the RealSpeak v4 API
when operating RealSpeak in in-process mode. See the sample
program “standardex”, described below, for extra details and a
demonstration of the new possibilities.

The ‘Application’ component refers to the source code that uses the

APL
This call sequence is using the default, implicit licensing mode.

1. The Application calls the TtsInitializeEx function to create
a TTS engine instance. At that time a number of general
parameters can be specified such as the default language and
voice, the destination call-back used to stream back the audio
to the application, the desired audio format. The source call-
back function pointer can be specified to use input streaming
for the input text. But this is optional since the TTS input
can now also be specified at the time a TTS action is
requested via the ProcessEx function. This new approach
enables the specification of the input via a URI, a filename or
a text buffer. When operating RealSpeak in in-process mode,
the application must specify the path of the engine library
using the s3I bl ocation member of the TTSPARM structure
passed into the TtsInitialize function.

2. When using dictionaries, the application defines a
DictionaryData structure for each dictionaty instance; this
structure describes where to find the dictionary data and how
to use it. This new approach enables references to URI
addresses and supports a number of document types. Fetch
properties can be defined in case of remote access to the

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 111/47

Chapter |l

10.

Deploying RealSpeak

dictionary data The Application calls TtsMapCreate to
create a map data structure in which all fetch properties can
be defined. The application calls TtsMapGet and
TtsMapSet functions to define these properties in the
created map data structure.

When using dictionaries, the Application calls the
TtsLoadUsrDictEx function for each dictionary; this
function returns a handle to a dictionary instance.

Call TtsSetParams to specify the initial speak parameters
such as language, voice, volume etc.

If the old input call-back method is not used, the Application
sets up a SpeakData structure describing the input text; this
structure supportts specifying a URI, a filename or a memory
block. If fetch properties need to be specified, the
Application calls TtsMapCreate to create a fetch property
map. The application then uses the TtsMapSetXXX
functions to add properties to the map one by one.

If the old method of streaming the input via the TTS source
call-back is used, the SpeakData structure members
specifying the input, being #7/ and data, must be set to NULL.
The Application calls the TtsProcessEx function to convert
the input text to audio of the type defined in TTSPARM
(specified in step 1). The input can be specified via the
SpeakData structure (URI or text buffer) or the old source
call-back method. The Process function executes the TTS
action synchronously; it only returns when all the speech
samples have been generated.

The audio is streamed back to the application via the
TtsDestCb Destination callback.

If required, the Application can perform several
TtsProcessEx calls, with different SpeakData and/or
different DictionaryData instances. When using dictionaries,
TtsEnableUsrDictEx, TtsDisableUstrDictEx and
TtsDisableUsrDictsEx can be used to enable dictionaries,
changes the priorities in which dictionaries are called and
disable dictionaries. The speak parameters can be updated
using the TtsSetParams function. Note that a limited
number of parameters can be updated while TtsProcess(Ex)
is busy (rate and volume). When the input text contains
markup controlling the speech generation, the parameters
will be updated for the course of the current TtsProcess(Ex)
execution, but will be reset to the values set via SetParam(s)
and the dictionary API functions.

When using dictionaries, the Application calls the
TtsUnloadUsrDictEx function for each dictionaty that has
been loaded by TtsLoadUsrDictEx. This unloads all
dictionary instances in use by the application.

When maps of fetch properties are created for either
SpeakData or DictionaryData, the Application calls the

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 111/48

Deploying RealSpeak

Chapter |l

TtsMapDestroy function for each map that has been
created.

11. The Application calls the TtsUninitialize function to
cleanup the TTS engine instance.

The RealSpeak v3.5 API did not support the xxxEx functions and the
map functions. But we recommend using the new functions.

Demonstration applications

Standard Demo

This is a simple command-line demonstration application which runs
on all platforms. It processes one text file in RealSpeak native input
format (using native markup and native character set for the specified
language). The output is one linear 16-bit PCM speech file (with
8kHz sample rate) named “standard.pcm”.

It should be run as follows:

standard <language> <voice> <engine directory> <text file>

Running the program without arguments, displays the usage and
some examples.

Some examples:

standard “American English” Jill “%SSFTTTSSDK%\speech”
“0ASSFTTTSSDK %\ api\demos\data\us_english.txt”

standard 0 0 “%SSFTTTSSDK% \speech”
“0ASSFTTTSSDK %\ api\demos\data\us_english.txt”

The parameters (all required) are:

language Language name or number (e.g.
(e.g. O specifies “American
English”)

voice Voice name or number (e.g. 0

specifies the first female voice for
the specified language)

engine directory The speech subdirectory of the
installation directory (which is
specified by the SSFTTTSSDK
environment variable). Specifying
the installation directory also
works.

text file File name of input text in
RealSpeak native input format

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 111/49

Deploying RealSpeak

Chapter |l

(using native markup and native
character set for the specified
language)

The language and voice numbers are listed in
“0%SSFTTTSSDK%\api\inc\Ih_ttsso.h”.

The sources and makefiles are installed at
"%SSFTTTSSDK % \api\demos\standard". For Windows, a
Microsoft Developer Studio Project File (.dsp) is available, for UNIX
a makefile to be used with the UINIX. make command is provided.
The user has to comment out the appropriate compile line.

Some comments on the implementation

This source code of this program demonstrates the simplest possible
call sequence to perform TTS using the RealSpeak v3 API functions:
first create and initialize a TTS engine instance via TtsInitialize(),
then process an input text via TtsProcess(), and finally destroy the
TTS engine instance with TtsUninitialize().

This demo shows how the language and voice can already be
specified when the TTS engine instance is created.

When operating RealSpeak in in-process mode, the application must
specify the path of the engine library using the szl.zblocation member
of the TTSPARM structure passed into the TtsInitialize function.
See the “API reference” chapter for a description the other members
of the TTSPARM structure that are set in the demo.

This application provides text input to RealSpeak via the source call-
back implemented by the function CbTtsSource. The output is
received via the call-back function CbTtsDestination. Events or
markers are received via the CbTtsEventNotify function which
ignores all events. All RealSpeak call-backs are specified when
Ttslnitialize() is called.

Standardex Demo

This is a simple command-line demonstration application which runs
on all platforms. It processes one text document which can be an
SSML document or a text with RealSpeak native markup.

The text can be presented in whatever character set supported for the
specified language. The input text can be specified via a local filename
or via a URI that refers to a document on an HTTP server. When
internet fetching is used, proxy and disk cache properties can be
specified.

The output is one linear 16-bit PCM speech file (with 8kHz sample
rate) named “standardex.pcm”.

It should be run as follows:

standardex <language> <voice> <engine directory>
((<input: text file> <content-type>) or <URI>)
((<proxy server> <proxy port>) or) <CachePath>

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 11I/50

Chapter |l

Deploying RealSpeak

Running the program without arguments, displays the usage.

Some examples:

(assuming the demo application is run from the %SSFTTTSSDK%o
directory)

Input from local text file (possibly containing native markup):
standardex “American English” Jennifer ./speech
./api/demos/data/us_english.txt text/plain;charset=iso-
8859-1 0 ./speech/components/common/cache

Input from local 4SML file:

standardex German Steffi ./speech ./api/demos/data/
german_4sml.ssml application/ssml+xml 0
./speech/components/common/cache

Input from http:// URI, no use of internet fetch cache:
standardex 0 0 ./speech http://arctic/realspeak/demo.ssml
http://proxy01 80 0 0

Input from http:// URI, enable the use of the internet fetch
cache:

standardex 0 0 ./speech http://nepal/realspeak/demo.txt
http://proxy01 80 ./speech/components/common/cache
1000

The arguments are:

language Language name or number (e.g.

(e.g. O specifies “American
English”)

voice

Voice name or number (e.g. 0
specifies the first female voice for
the specified language)

engine directory The speech subdirectory of the

install directory (which is usually
specified by the SSFTTTSSDK

environment variable)

input: text filename or URI Input text provided via a filename

or a URIL. The markup format and
the character set can be any of the
supported ones (see next
argument).

content-type String that describes the type of

content of the input.

This argument is only required
when the input is provided via a
filename. For URI’s that start with
http:.// the atgument must not be
present. Then the content type is
determined by the HTTP Server
(only if http:// prefix) or by

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter I1I/51

Deploying RealSpeak

Chapter |l

making use of the extension rules
(e.g. .txt document is assumed to
use the native markup and native
character set, .ssml is an SSML
document).

The supported values for content-
type are listed in the API
Reference chapter, section
“Defined Data Types”, item
“SpeakData”. E.g.
“text/plain;charset=windows-
12527

proxy server Name of the proxy server to be
used for internet fetching.

Use value “0” if no proxy setrver
has to be used.

proxy port If <proxy server> is not “0”,
specifies the proxy port number
cache path Directory name for the disk cache

used when fetching URI's.
Use value “0” if caching must be

disabled.

The language and voice numbers are listed in

“0ASSFTTTSSDK % \api\inc\lh_ttsso.h”.

The sources and makefiles are installed at

"%SSFTTTSSDK% \api\demos\standardex". For Windows, a
Microsoft Developer Studio Project File (.dsp) is available, for UNIX
a makefile to be used with the UINIX. make command is provided.
The user has to comment out the appropriate compile line.

Some comments on the implementation

This source code of this program demonstrates the use of the main
RealSpeak v4 extended functions: first create and initialize a TTS
engine instance via TtsInitializeEx(), then process an input text via
TtsProcessEx(), and finally destroy the TTS engine instance with
TtsUninitialize(). When calling TtsProcessEx(), a fetch property map
is specified. The map is created using TtsMapCreate() and the
download timeout property is set using TtsMapSetU32().

This application provides text input to RealSpeak via the SpeakData
parameter of the ProcessEx() function: when the input is an HTTP
URI, the URI is specified; else the content of the file is read into a
buffer whose address is set in the data member and the contentType
member refers to the content-type command-line argument.

The output is received via the call-back function CbTtsDestination.
Events or markers are received via the CbTtsEventNotify function
which ignores all events. All call-backs are specified when
Ttslnitialize() is called.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 111/52

Deploying RealSpeak

Chapter |l

4SMIL. Demo

This is a simple command-line demonstration application which runs
on all platforms. It processes one 4SML text file (see “SSML support
chapter). The output is one linear 16-bit PCM speech file (with 8kHz
sample rate) named “4sml.pcm”. It is the counterpart of the
“standard” demo for 4SML input. Note that 4SML processing can
also be demonstrated with the standardex demo.

It should be run as follows:

4sml <language> <voice> <engine directory> <text file>

Running the program without arguments, displays the usage and
some examples.

Some examples:

4sml “American English” Jill “%SSFTTTSSDK%\speech”
“0ASSFTTTSSDK%\api\demos\data\us_english_4sml.ssml”

standard 0 0 “%SSFTTTSSDK%\speech”
“0ASSFTTTSSDK%\api\demos\data\us_english_4sml.ssml”

The parameters (all required) are:

language Language name or number (e.g.
(e.g. O specifies “American
English”)

voice Voice name or number (e.g. 0

specifies the first female voice for
the specified language)

engine directory The speech subdirectory of the
install directory (which is specified
by the SSFTTTSSDK
environment variable)

text file Input text in 4SML format

The language and voice numbers ate listed in

“0ASSFTTTSSDK % \api\inc\lh_ttsso.h”.

The sources and makefiles are installed at

"%SSFTTTSSDK% \api\demos\4sml". For Windows, a Microsoft
Developer Studio Project File (.dsp) is available, for UNIX a makefile
to be used with the UINIX. make command is provided. The user
has to comment out the appropriate compile line.

Some comments on the implementation

This source code of this program demonstrates the simplest possible
call sequence to process an SSML or 4SML file using the RealSpeak

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter I1I/53

Deploying RealSpeak

Chapter |l

v3.5 API: first create and initialize a TTS engine instance via
Ttslnitialize() and change the markup type parameter to 4SML using
TtsSetParam(), then process a 4SML text via TtsProcess(), and finally
destroy the TTS engine instance with TtsUninitialize().

This application provides text input to RealSpeak via the source call-
back implemented by the function CbTtsSource. The output is
received via the call-back function CbTtsDestination. Events or
markers are received via the CbTtsEventNotify function which
ignores all events. All RealSpeak call-backs are specified when
TtsInitialize() is called.

Client/server use of RealSpeak

Intro

RealSpeak Telecom supports Client/Server functionality. This
configuration has already been explained in the “System Overview”
section of the Introduction chapter and figures 1-3 and I-4 illustrated
this configuration.

The application designer links the TTS API Library to the application
in just the same way as when using RealSpeak in-process, but the use
of the API is slightly different as explained a bit further. The TTS
server standalone program is run on one or more server machines on
the network. Each server can have one or more RealSpeak voices
installed.

The RealSpeak client instances communicate with the TTS server
through a standard TCP/IP socket connection.

Running the TTS Server

Intro

The TTS Server executable is called ttsserver.exe on Windows, and
ttsserver on all other operating systems. The RealSpeak Telecom
installer installs it in the top-level of the RealSpeak Telecom
installation directory, normally specified by the environment variable

SSFTTTSSDK.

Configuring the server

The TTS Server is configured using an XML configuration file, by
default $SSFTTTSSDK/ config/ttssetrver.xml (Unix) or
%SSFTTTSSDKY%\ config\ ttsserver.xml (Windows), which specifies
a large number of configuration parameters. Some examples of
parameters are: the TCP port number of the RealSpeak service, the
location of the license server, the default speech volume and internet
fetch properties.

To run the server with the ScanSoft provided default configuration,

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 11I/54

Deploying RealSpeak

Chapter |l

change to the directory where the server is installed and run the TTS
server executable with no arguments, such as:

(Windows) ttsserver.exe
(Unix) ttsserver

To run the server with a modified configuration, there are two
options. The first is to modify the default configuration file
ttsserver.xml, then start the server as shown above. However, if you
do so and later install a RealSpeak Telecom service pack or upgrade,
your ttsserver.xml will get overwritten. The second option is to create
a second XML configuration file and use it to augment the default
configuration file. To do so, make a site-specific copy of
ttsserver.xml, such as ttsserver_site.xml. Then open the copy in a text
or XML editor and remove all the parameters except the specific ones
you wish to customize. Then customize those parameters and save it.
Finally, start the T'TS Server specifying both configuration files, where
parameters found in the file specified by the second -c argument (the
site-specific settings) override the ScanSoft provided defaults. The
TTS Server allows you to specify as many -c options as you like,
permitting multi-level configuration file inheritance.

(Windows) ttsserver.exe -c
%SSFTTTSSDK%\ config\ttssetrver.xml -c
%SSFTTTSSDK%\ config\ttsserver_site.xml

(Unix) ttsserver -¢ $SSFTTTSSDK/ config/ttsserver.xml -c
$SSFTTTSSDK/ config/ttssetver_site.xml

For details on the TTS Server configuration parametets, see the
“Configuration Files” section in the “User Configuration” chapter.

Specifying the installation directory

API Call sequence

In Client/Setver mode, the TTS Setver looks for the TTS engine
library in the directory specified by the -d option when the server
program was started. If the -d option was not specified, it looks for
the engine in the default directory. For the TTS Setver, it’s also
possible to set the SSFTTTSSDK environment variable in the
configuration file. Please note that the environment variable,
SSFTTTSSDK is automatically set by the windows installer. This
does not apply to the UNIX installers.

An engine instance can be opened in Client/Server mode using the
TtsCreateEngine function, which sets up a connection with a TTS
Server running on a network host., followed by a TtsInitializeEx
call that specifies the server argument returned by the
TtsCreateEngine call. After this point, the call sequence is the same as

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter I1I/55

Deploying RealSpeak

Chapter |l

for in-process use of RealSpeak. The only exception is that after
closing a client instance with TtsUnitialize, TtsRemoveEngine
should be invoked to close the connection with the server. Note that
this procedure is in prinicipal no longer required with RealSpeak v4.0,
since TtsCreateEngine and TtsRemoveEngine have become dummy
functions.

Demonstration applications

Twonode Demo

This is a simple command-line application which runs on all
RealSpeak platforms and demonstrates the client/setver operation of
RealSpeak. It processes one text file in RealSpeak native input
format. The output is one linear 16-bit PCM speech file with an 8kHz
sample rate named “twonode.pcm”.

Before running the program, one must start the TTS Server
application on the server machine and configure it to provide the TTS
service via the TCP port number 6666. This can for instance be
performed by running the below command from the RealSpeak
installation directory.

ttsserver -p6666 -d.

Then on the client machine run the twonode demo program as
follows:

twonode <language> <voice> <server> <text file name>
Running the program without arguments, displays the usage.
Some examples:

twonode “American English” Jill pegasus
“0ASSFTTTSSDK% \api\demos\data\us_english.txt”

twonode 0 0 10.0.1.10 “%%SSFTT'T SSDK%\speech”
“0ASSFTTTSSDK% \api\demos\data\us_english.txt”

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter I1I/56

Deploying RealSpeak

Chapter |l

The parameters (all required) are:

language Language name or number (e.g.
(e.g. O specifies “American
English”)

voice Voice name or number (e.g. 0

specifies the first female voice for
the specified language)

server Name or IP address of TTS
server; the port number is fixed at
66060.

text file name File name of input text in

RealSpeak native input format
(using native markup and native
character set for the specified

language)

The language and voice numbers are listed in

“0ASSFTTTSSDK % \api\inc\lh_ttsso.h”.

The sources and makefiles are installed at

"%SSFTTTSSDK% \api\demos\twonode". For Windows, a
Microsoft Developer Studio Project File (.dsp) is available, for UNIX
a makefile to be used with the UINIX. make command is provided.
The user has to comment out the appropriate compile line.

Some comments on the implementation

The source code of this program demonstrates the use of a TTS
server. This program first calls the TtsCreateEngine API function as
explained in the “API Call sequence” section above.

Note that the Parm.szLibLocation field when calling TtsInitialize() is
NULL. This is allowed because TTS is used in client/server mode; in
this case the RealSpeak client will use the SSFTTTSSDK
environment variable to determinate the engine directory.

Dict_n_rules Demo

This is a command-line demonstration application which runs on all
platforms. It demonstrates the deployment of user dictionaries and
rulesets. The demo can be run as a TTS client when the ‘-s’; option is
set, else it runs TTS in-process. It generates linear 16-bit PCM files.

It processes a list of text documents which can be SSML documents
or texts with RealSpeak native markup.

The input texts can be specified via a local filename or via a URI that
refers to a document on an HTTP server. A base URI or local file
can be specified.

The output are linear 16bit PCM speech files (with 8kHz sample rate),
one for each input document, named “<root input name without
extension>.pcm” and written to the specified output directory.

It should be run as follows:

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter I1I/57

Chapter |l

Deploying RealSpeak

dict_n_rules -1 <language> [-v <voice>] -@ <input text list file> [-d
<install directory>] [-o <output directory>] [-u <user dictionary list
file>] [-r <ruleset list file>] [-b <base URL>] [-s <server name>]

Running the program without arguments, displays the usage.

Some examples:

(assuming the demo application is run from the %SSFTTTSSDK%Y

directory)

dict_n_rules -1 "American English" -v Jill -@ input.st -u dict.Ist -r

ruleset.lst
(in-process use of TTS)

dict_n_rules -1 "American English" -v Jill -@ input.st -u dict.Ist -r

ruleset.lst -s Pegasus

(Client/Server use of TTS)

The arguments are:

-1 <language>

[required] Language name or
number (e.g. (e.g. 0 specifies
“American English”)

-v <voice>

[optional] Voice name or number
(e.g. O specifies the first female
voice for the specified language)
Default: 0, the first female voice

-d <install directory>

[optional] The installation
directory (which is usually
specified by the SSFTTTSSDK
environment variable).

Default: the value of the
environment variable

SSFTTTSSDK

-@ <input text list file>

[required] File listing one or more
input documents; the format of
each line: URI or local file name
with optional MIME content-type
(default: left unspecified). If a file
name contains spaces it must be
enclosed by double quotes.

The content-type parameter allows
the specification of the markup
format and the character set, see
SpeakData structure for a
description of the supported
values. Note that for URD’s that
start with http:.//, RealSpeak can
usually determine the content-type
automatically.

RealSpeak Telecom SDK V4.0 December 2005
Programmer's Guide

ScanSoft Proprietary
Chapter 111/58

Deploying RealSpeak

Chapter |l

-o <output directory> [optional]
Default: the current working
directory

-u <user dictionary list file> [optional] File listing one or more

user dictionaries; format of each
line: URI or local file with optional
MIME-type (default: left
unspecified)

Default: no dictionaries

-r <ruleset list file> [optional]File listing one or more
user rulesets; format of each line:
URI or local file with optional
MIME-type (default: left
unspecified)

Default: no rulesets

-b <base URL> Base URI or local file, the path of
this URI or file is used when
loading user dictionaries and
rulesets that are specified with a

relative path name.
Default: undefined

-s <server name> Run in client/server mode using
the specified host (name or IP
address) as server; the port
number is fixed at 6666.
Default: undefined, run TTS in-
process

The language and voice numbers are listed in
“0%SSFTTTSSDK%\api\inc\Ih_ttsso.h”.

The sources and makefiles are installed at
"%SSFTTTSSDK Y% \api\demos\dict_n_rules". For Windows, a
Microsoft Developer Studio Project File (.dsp) is available, for UNIX
a makefile to be used with the UINIX. make command is provided.
The user has to comment out the appropriate compile line.

Some comments on the implementation

This source code of this program demonstrates the use of user
dictionaries and rulesets.

The file “dict_n_rules.c” implements the main() function which
contains all RealSpeak API calls.

The file “listfile.c” implements the class of list files which can be used
to parse a list file and iterate through it.

If the client/server mode is enabled, the TtsCreateEngine() function
is called first. From that moment, the call sequence is the same as for
in-process mode, apart from the calling of TtsRemoveEngine() at the
end of the program.

A TTS engine instance is created via TtslnitializeEx().

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter I1I/59

Deploying RealSpeak

Chapter |l

Then a fetch property map is constructed with TtsMapCreate() and, if
specified on the command line, the URL base and the download
timeout property are set via the appropriate TtsMapSetXxx()

function.

Then each user dictionary specified in the User dictionary list file is
loaded and implicitely enabled with the TtsLoadUstDictEx()

function. If appropriate, the fetch properties are applied during the
loading.

Each user ruleset specified in the Ruleset list file is loaded and
implicitely enabled with the TtsSetParams() function. If appropriate,
the fetch properties are applied.

Then, each input text document (specified via a file or URI) listed in
the Input text list file, is processed via TtsProcessEx().

This application specifies the input to RealSpeak via the SpeakData
parameter of the ProcessEx() function.: the uri member refers to the
filename or URIL contentType member refers to the content-type
specified in the Input list file. It is set to NULL if the content-type
has not been specified., and then the engine will determine the type
automatically.

Subsequently, all user dictionaries are disabled with one call to the
TtsDisableUsrDictsEx() function. The dictionary engine instances
are unloaded one by one using the TtsUnloadUstrDictEx() function.
The user rulesets are unloaded one by one using the TtsSetParams()
function.

Then the fetch property map is destroyed using TtsMapDestroy()
function.

Finally the TTS engine instance is destroyed with TtsUninitialize(),
followed by a TtsRemoveEngine() call if a TTS server was used.

The output is received via the call-back function CbTtsDestination.
Events or markers are received via the CbTtsEventNotify function
which ignores all events. All call-backs are specified when
Ttslnitialize() is called.

RealSpeak Parameters

Introduction

In a client/server environment, the default values for numerous
parameters can be set in one or more RealSpeak Server configuration
files.

When a TTS engine instance is created using the Ttslnitialize(Ex) API
function, the majority of these parameters and some extra parameters
can be set to new values, overriding the default values of the
configuration files.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 111/60

Deploying RealSpeak

Chapter |l

After creation, most “speak” parameters can be updated using the
TtsSetParam(s) API functions.

Some parameters can be set for a particular Speak request when
calling the TtsProcessEx() function.

Most speak parameters can also be changed by marking up the input
text. If so, those values override both the RealSpeak Server defaults
and the value set via the APIL. But they are only active for that (and
only that) speak request.

Use of Configuration Files

The TTS Server is configured using an XML configuration file, by
default “config/ttsserver.xml” within the RealSpeak Telecom
installation directory.

Note that when operating RealSpeak in in-process mode, the server
configuration file is not used at all (except when using the SAPI5
interface). The use of server configuration files is explained in more
detail in the “Running the TTS Server” subsection of the
“Client/Setver Use of RealSpeak” section further in this chapter.

Setting of Parameters via the API

Non-speak parameters

The parameters that are not directly related to the text-to-speech
conversion process, are usually shared over all engine instances. They
can be set via the Ttslnitialize(Ex) API function. Note this function
initializes a certain instance, but only the first call to TtsInitialize(Ex)
can set the concerning parameters. Examples of this class of
parameters are the “RealSpeak Installation directory” and the “cache
directory” for internet fetches.

Speak Parameters

Parameters tuning the Text-to-speech conversion that are set via the
API apply to a certain instance. A number of parameters can already
be specified when the engine instance is initialized via the
TtsInitialize(Ex) API function, by setting the appropriate fields in a
“TTSPARAM?” structure. This structure specifies for instance the
initial language and voice and , the volume. As mentioned above this
structure also specifies parameters that are shared over all instances.
The structure type will be discussed in greater detail in the
“TTSPARM” topic in the “RealSpeak API” chapter.

Examples:
TtsParm.nllanguage = TTS_VOICE_USE_STRING;
TtsParm.szLanguageString = “French”;
TtsParm.nVoice = TTS_VOICE_USE_STRING;
TtsParm.szVoiceString = “Sophie”;

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter I1I/61

Deploying RealSpeak

Chapter |l

Text Markup

Most speak parameters can be set using the TtsSetParam(s) functions.
In most cases parameters cannot be updated when the instance is
busy executing the TtsProcess(Ex) function (which performs the text-
to-speech conversion process) in another thread. Only the volume
and the rate can be updated while speaking

Finally, a lot of the parameters can also be updated by inserting
markup in the input text. The RealSpeak API supports two markup
languages: the native one (the default) and 4SML (SSML with some
proprietary extensions). The same markup languages are supported
when the Speechify API is used.

SAPIS5 is supported when the SAPI interface is used. Please refer to
the “SAPI5 Compliance” and “SSML Support” chapter for details
regarding the SAPI5 or SSML markup languages. The native markup
language is described in each of the language specific user guides.

Overview of RealSpeak parameters

The table below gives an overview of all the RealSpeak parameters
and how they can be set. Setting parameters via environment
variables or the registry is however not described; please refer to the
“Installation Guide” and the “SAPI5 compliance” chapter for this.

As an example of how to interprete the table, here is a description of
the setting of the “voice” speak parameter.

RealSpeak allows the selection of the voice in three different ways; it
however does not support the setting of a “default voice” via the
configuration files or as a parameter of the TtsProcess(Ex) function.
The voice can be set:

e Via the TtsInitialize(Ex) API function, by setting the
appropriate values in the TTSPARAM structure. For the
details see the description of the TTSPARAM structure type
in the “RealSpeak API” chapter; the involved structure fields
are ‘nVoice’ and ‘szVoiceString’

Example:
Parm.nVoice = TTS_VOICE_USE_STRING;
Parm.szVoiceString = “Jill”;

e Using the TtsSetParam(s) function, providing the instance is
not busy executing the TtsProcess(Ex) function in another
thread.

e Using markup: the SSML <voice> element and voice
attribute, the SAPI5 voice element or the native
<esc>\voice\ tag.

Most parameters that can be changed via the TtsSetParam (s)
functions can only be updated while the TTS instance is in an idle

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 111/62

Deploying RealSpeak

Chapter |l

state, meaning that there is no TtsProcess(Ex) function being
executed for that instance in another thread. The only two

exceptions are the rate and volume parameters

Programmer's Guide

Parameter Configurati Initialize SetParam(s) | ProcessEx Text
on Files function function function Markup
(SpeakData
parameter)
Environment Settings
Installation Y Y (shared | N N N
directory (<SSFTTT | overall
SSDK>) instances;
TtsParm.s
zLiblLocat
ion)
Temp. files Y N N N N
directory (<TMPDI
R>)
User ID Y N N N N
(<USER>)
Network parameters
See “User Y (for all) N (for all) | N (for all) N (for all) N (for all)
Configuration”
chapter for the
full list. E.g.
TCP/IP port
number
TTS setvers The SAPI5 | Y (the N N N
client client
configurati specifies
on file must | the
list the hostname
available of the
TTS servers | server, the
under port
<tts_setrver number
s> or the
service
name in
the
TTS_SER
VER
structure.)
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Chapter 111/63

Chapter |l

Deploying RealSpeak

Programmer's Guide

Parameter Configurati | Initialize SetParam(s) | ProcessEx Text
on Files function function function Markup
(SpeakData
patameter)
Licensing Parameters
Licensing mode, Y N Y; idle state | N N
default or explicit | (<license_ (TTS_LIC
mode>) ENSE_MO
DE_PARA
M)
License servers Y N N (use the N N
(<license_s SSFT _TTS
ervers> _LICENSE
_SERVER
S
environmen
t variable
when using
RealSpeak
in-process)
Miscellaneous Server Parameters
See “User Y (for all) N (for all) | N (for all) N (for all) N (for all)
Configuration”
chapter for the
full list. E.g.
default mode for
running the server
(background
versus interactive)
Diagnostic and Error Logging Parameters
“User Y (for all) N (for all) | N (for all) N (for all) N (for all)
Configuration”
chapter for the
full list. E.g. log
level, maximum
size of log file
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Chapter 1ll/64

Chapter |l

Deploying RealSpeak

Parameter Configurati Initialize SetParam(s) | ProcessEx Text
on Files function function function Markup
(SpeakData
parameter)
Internet Fetch parameters
Global cache Y Y (E.g N N
parameters (E.g. (E.g. szCacheP
cache directory, <cache_dir | ath,
cache max. total ectory>, CacheTot
size <cache_tot alSizeMb
cache). See al_size>) members
TTSPARAM and of
“User TtsParm);
Configuration” shared
chapter for more over all
details instances
Proxy parameters | Y Y N N N
(proxy server and | (<inet_pro | (szProxyS
port number) xy_server> | erver and
and nProxyPo
<inet_prox rtNumber
y_server_p member
ort>) of
TtsParm;
shared
over all
instances)
Inet extension Y N N N N
rules (<inet_exte
nsion_rules
>)
User agent name | Y N N N N
in HTTP headers | (<inet_user
_agent>)
Whether to accept | Y N N User specific | N
HTTP cookies (<inet_acce cookie jar
pt_cookies can be
>) provided via
tetchCookieJ
ar parametet;
when NULL
cookies are
refused
URL base N N N Y Y for
(“inet.urlBase | 4SML
7 in
fetchProperti
es)
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter 111/65

Chapter |l

Deploying RealSpeak

Programmer's Guide

Parameter Configurati | Initialize SetParam(s) | ProcessEx Text
on Files function function function Markup
(SpeakData
patameter)
Web server fetch | N N N Y Y for
timeout (fetchPropert | 4SML
ies) (fetchtime
out for
<audio>)
Use of cache N N N Y(Y for
entry for a fetchProperti | 4SML
specific internet es (maxage
fetch “inet.maxage | and
” and maxstale
“inet.maxstal | for
e”) <audio>)
Input text parameters
Markup type N N Y;idle state | Y N
(native or 4SML (TTS_MAR | (contentTyp)
for RealSpeak KUP_TYP
API, SAPI5 is E_PARAM
only possible if)
SAPI interface is
used)
Character N N N Y Y for
encoding (contentTyp) | 4SML
and
SAPI5
(<Pxml>
header)
Type of N N Y; idle state | N Y for
document (e.g. (TTS_DO 4SML
“text” or “email”) CUMENT (ssft-
_TYPE_P dtype
ARAM) attribute)
and native
markup
(<esc>%)
Audio Parameters
Sample frequency | N Y N N N
(TtsParm.
nFrequen
<y)
Sample format N Y Y;idle state | N N
(e.g. mu-law) (TtsParm. | (TTS_OUT
nOutputT | PUT_TYP
ype) E_PARAM
)
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Chapter 111/66

Chapter |l

Deploying RealSpeak

Programmer's Guide

Parameter Configurati | Initialize SetParam(s) | ProcessEx Text
on Files function function function Markup
(SpeakData
patameter)
Event parameters
call-back N Y N N N
functions (TtsParm.
cbFuncs)
Marker mode N N Y; idle state | N N
(TTS_MAR
KUP_TYP
E_PARAM
)
Speak Parameters
Language N Y Y;idle state | N Y for
(language and (TtsParm. | (TTS_LAN 4SML
country or dialect) szLanguag | GUAGE_P (xml:lang
eString or | ARAM) attribute)
TtsParm.n and
Language) SAPI5
(<Lang>)
Voice (name, N Y Y; idle state | N Y (all)
gender, number, (TtsParm. | (TTS_VOI
etc) szVoiceSt | CE_PARA
ring or M)
TtsParm.n
Voice)
Rate Y N Y;idleand | N Y (all)
(<default_r busy state
ate>) (TTS_RAT
E_LARGE
SCALE_P
ARAM or
TTS_RAT
E_PARAM
)
Volume Y N Y;idleand | N Y (all)
(<default_v busy state
olume>) (TTS_VOL
UME_LAR
GESCALE
_PARAM
or
TTS_VOL
UME_PAR
AM)
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Chapter 11l/67

Chapter |l

Deploying RealSpeak

Parameter Configurati | Initialize SetParam(s) | ProcessEx Text
on Files function function function Markup
(SpeakData
patameter)
Pitch (not N N Y N Y but not
supported by the (TTS_PITC supported
engine) H_PARAM by engine
) but not
supported
by engine
Read mode N N N N Y for
(e.g.sentence-by- native
sentence, word- markup
by-word)
Spell mode N N N N Y (all)
on/off
End-of-message N N N N Y for
pause length native
markup

Multiple engine instances

Use of RealSpeak in telephone or dialogue applications

Telephony applications are designed to service many customers at the
same time. The concept of “voice port” is often used in this domain.
Each voice port can service one customer at a time.
Typically, a telephony application will direct all TTS requests for one
telephone call or dialogue session to the same TTS engine instance.
The term “call” will be used to refer to a telephone call by a customer
or any form of dialogue session.
The instance can in principle be created and initialized at the start of
the call and destroyed when the call is terminated. But it is usually
more efficient to keep the engine instance alive and reuse it for
another call; this means one TTS engine instance is assigned to one
voice port for a lifetime that is usually much longer than one call.

Note that reusing an engine instance for a new call usually requires
the application to restore the engine instance to a well-known state
before reusing it for another call. This is needed when the settings of
an instance are changed in the course of one call (e.g. adjust the
volume, switching the voice or language, loading of user dictionaries).
These changes are undone in a similar way as they were performed:
using the TtsSetParams() function and the API functions for the
enabling/disabling of user dictionaries.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary

Chapter 111/68

Deploying RealSpeak

Chapter |l

Since the TtsProcess() function is a synchronous or blocking
function, the concurrent handling of multiple voice ports, requires the
use of process threads. Usually one thread is created for each voice
port. The audio is streamed back to the telephone application via the
Destination call-back. The first argument of which, the application
data pointer, can be used to direct the audio to the appropriate voice
port.

Real-time responsiveness and audio streaming

To support real-time audio streaming, the engine should return audio
chunks at a rate that is faster or equal to the play-back rate.

When servicing multiple voice ports each TTS instance should be run
in a separate thread to enable real-time audio streaming for all ports.
On the server, threads are automatically created for each server
engine instance. By using threads, the switching between the
instances is handled by the operating system.

The RealSpeak engine attempts to minimize the latency for each TTS
request by sending audio back as soon as the buffer provided by the
application can be filled completely.

The engine instance achieves this by narrowing the window moving
over the data as much as possible without degrading the speech
quality. One of the first processing steps is to split off a next
sentence. Then the linguistic processing is performed on that
sentence. The unit selection normally operates on one sentence, but
for long sentences, it limits its window to one phrase. The final
subprocess, the synthesizer, processes one speech unit at a time and
narrows its scope to a small chunk of speech samples when nearing
the output step.

As soon as that chunk of speech is sent to the application via the
Destination call-back, it can be played back. The Destination call-
back should return as soon as possible, to allow the instance to
process the rest of the speech unit, sentence or text and fill a next
buffer with audio before the audio of the previous buffer has played
out. Note that the size of the output chunk is determined by the
application, for reasons of efficiency it should not be too small, but to
minimize the latency it shouldn’t be too big. A good compromise is
4Kbytes.

The above explains that the latency for the first audio chunk of a
sentence is usually longer than for the following chunks, which is
convenient since the effect of an underrun at the start of a sentence is
less critical: it results in a longer pause in-between two sentences.
The latency also depends on the type of input text. The application
designer should provision RealSpeak with an adequate safety margin
for the possible variance in the latency. For instance, if most TTS
requests consist of a text with normal sentences but a few may have
extremely long sentences (e.g. pootly punctuated e-mails) then
allowance should be made for situations where the TTS engine

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 111/69

Deploying RealSpeak

Chapter |l

instance will have to deal with long sections of text with no
punctuation. Such an occurrence may result in an extended intet-
sentence latency, normally audible as a longer pause in-between two
sentences. To reduce the risk for extended inter-sentence latencies,
the engine will split up very long sentences at an appropriate location
(e.g. a phrase boundary). But is exceptional to have a natural sentence
that long (the length depends on the language and the sentence’s
content and but it’s usually around 750 characters).

Note that when servicing multiple voice ports and assuming each
TTS instance is run in a separate thread, instances are not influenced
by the badly punctuated input of another instance.

If an audio chunk is not returned before the previous chunk has been
played out, a gap in the speech output will be heard. Such an intra-
sentence gap can have a stronger audible effect: it can occur for
instance within a word. But such an “underrun” is less likely, and will
only start to appear when operating RealSpeak near its limits. The
effects can be masked by maintaining a queue of audio chunks which
allows accumulating audio faster than real-time to compensate for the
rare occasion of a non-realtime response. Usually the audio output
device will support the queuing or buffering of audio chunks before
they are effectively played out. In any case, when the Destination
call-back returns with an audio chunk, it’s safer to return a buffer for
the next chunk ASAP instead of waiting till the play-back of the
previous chunk has finished. Of course, when the instance runs
faster than real-time, the insertion of some waiting can be appropriate
when the size of the queue grows too much (a fixed maximum on the
number of buffers would then result in an overrun). Note that
because of the ‘throttling” mechanism implemented by RealSpeak, the
audio chunk delivery rate is limited to two times real-time, thus
reducing the risk for overruns.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 111/70

RealSpeak Telecom
Sottware Development Kit

Chapter IV

RealSpeak API

Programmer’s Guide

RealSpeak API

New and Changed in RealSpeak 4.0 API

As a result of the improved functionality, the interface of the TTS
system has been changed. To ensure backwards compatibility, new
functions and data types are added to the interface to provide the new
functionality; both behavior and interface remain the same for the
existing functions and data types. Some new functions are an
extension of existing functions and it is recommended to use those
instead of the existing ones. Above that, the new functionality
includes a run-time based licensing system. This paragraph contains
an overview of all changes.

The following functions are new for this release:

TtsDisableUsrDictsEx
TtsMapCreate
TtsMapDestroy
TtsMapSetChar
TtsMapSetU32
TtsMapSetBool
TtsMapGetChar
TtsMapFreeChar
TtsMapGetU32
TtsMapGetBool
TtsSetParams
TtsGetParams
TtsResourceAllocate
TtsResourceFree

The following functions are an extension of existing functions. They
end with an ‘Ex’ to make a clear separation between the old and new
functions. The corresponding old functions can be found between
brackets:

TtslnitializeEx (TtsInitialize)
TtsProcessEx (TtsProcess)
TtsLoadUstDictEx (TtsLoadUstDict)
TtsUnloadUstDictEx (TtsUnloadUstDict)
TtsEnableUsrDictEx (TtsEnableUsrDict)
TtsDisableUstDictEx (TtsDisableUstrDict)

The following data types are new for this release:

HTTSDCTEG
HTTSMAP
HTTSVECTOR
TTS_PARAM_T
TTS_Marker
TTS_Event
TTS_BookMark
TTS_SentenceMark

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/72

TTS_WordMark
TTS_PhonemeMark
TTS_ParagraphMark
SpeakData
DictionaryData

HTTSDICT and HTTSDCTEG are equivalent; they are both
handles to a dictionary instance. By design, HTTSDCTEG must be
used in combination with the new functions while HTTSDICT must
be used in combination with the already existing functions.

The SpeakData structure is used in combination with the new
TtsProcessEx function.

It is used to describe the actual TTS input data: its location, fetch
properties and type (used markup language and character set). This
new approach enables references to URI addresses and supports the
specification of the document type: “standard” (use of native markup)
versus 4SML (or SSML). Fetch properties can be especially handy in
case of remote access to the input data (e.g. for specifying a fetch
timeout). The input text can also be provided via a memory buffer.
When SpeakData is used, it replaces the TtsSourceCb callback
function; the source callback can still be used with the new function,
though

The DictionaryData structure is used in a similar way as the
SpeakData structure; it describes a dictionary: its location, fetch
propetties, type and priority.

The TTSPARM data type has been extended and contains now more
members. Basically there are two kinds of new members: parameters
that describe the new proxy server functionality and parameters that
describe the new cache functionality. The existing functions will only
use the old members.

The TTS_PARAM_T data type has to be used together with
TtsGet/SetParams and makes it possible to respectively query or
modify multiple parameters from an engine instance with one
function call.

The TTS_Marker, TTS_Event, TTS_BookMark, TTS_SentenceMark,
TTS_WordMark, TTS_PhonemeMark and TTS_ParagraphMark are
used to support markers or events. Markers can be received via the
TtsEventCb callback function and provide the application with extra
info about the message that is being processed. The callback was
already defined in the previous version, but it was never called.

Run-time licensing has been enforced to the product. The new API
function TtsResourceAllocate allows control on the use of licenses.
By default implicit licensing mode is used which requires no extra
function calls.

The licensing is based on the number of active TTS engine instances.
There are two licensing modes, an explicit and an implicit one (the
default). More info about licensing can be found in the “Installation
Guide” chapter.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter IV/73

Note: don’t use the old functions and
the new functions in conjunction!

Defined Data Types

HTTSDICT

HTTSDCTEG

HTTSINSTANCE

HTTSMAP

HTTSVECTOR

This section describes the defined data types that are required to
interact with the APL

HTTSDICT is the type representing the handle to a dictionary
instance. It is returned from a successful call to the TtsLoadUstDict
function. This type is in the header file lh_ttsso.h.

This type is used in combination with the obsolete
TtsLoadUsrDict/TtsUnloadUsrDict functions and should not be
used in new implementations anymore; see HTTSDCTEG.

HTTSDCTEG is the type representing the handle to a dictionary
instance. It is returned from a successful call to the
TtsLoadUsrDictEx function. This type is in the header file lh_ttsso.h.

HTTSDICT and HTTSDCTEG are the same. By design,
HTTSDCTEG must be used in combination with the new functions.

HTTSINSTANCE is the type representing the handle to an open
TTS engine instance. It is returned from a successful call to the
TtsInitialize or TtsInitializeEx function. This type is in the header file
lh_ttsso.h.

HTTSMAP is the type representing the handle to an open TTS map.
A TTS map contains the fetch properties for speech data or a
dictionary instance. It is returned from a successful call to the
TtsMapCreate function. This type is in the header file lh_ttsso.h.

HTTSVECTOR is the type representing the handle to an open
Vector. It is a member of the SpeakData and DictionaryData
structures and is updated when the API is called.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter IV/74

TTSRETVAL

TTSRETVAL is the type representing a TTS error. This type is in the
header 1h_ttsso.h.

LH_SERVER_INFO

This structure is used to set the server network information. This
structure is in the header lh_ttsso.h.

typedef struct

{

LH_CHAR IP_Address[80];
LH_CHAR service[80];
LH_S32 port_number;

} LH_SERVER_INFO;

Structure members

IP_Address IP address of the server
Service Service name
port_number Port number

LH_SDK_SERVER

This structure holds the LH_SERVER_INFO structure with the
servet’s network information in it and the handle to the server. This
structure is in the header lh_ttsso.h.

typedef struct

{

LH_SERVER_INFO server;
LH_S32 server_handle;

}LH_SDK_SERVER,;

Structure members

server Server information structute
server_handle Handle to server
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter IV/75

TTSCallBacks

TTSPARM

TTSCallBacks is used to pass the addresses of callback functions in
Ttslnitialize() or TtsInitializeEx(). The function definitions for the

callbacks are described in the User Callbacks section.

typedef struct

1

int
TTSSOURCECB
TTSDESTCB
TTSEVENTCB
} TTSCallBacks;

Structure members
numCallbacks
TtsSourceCb

TtsDestCb
TtsEventCb

numCallbacks;
TtsSourceCb;
TtsDestCb;
TtsEventCb;

Number of callbacks; is not
used.

Callback for source text
Callback for output audio
Callback for events

A TTSPARM typed structure is used to specify the (initial)
parameters for a given engine instance when calling TtsInitialize or
TtslnitializeEx.. This data structure is defined in the header file
“lh_ttsso.h”. See Appendix A for a summary of the acceptable values

for each membet.

typedef struct
{
Ule nlLanguage;
CHAR* szLanguageString
ul1e6 nOutputType;
Ul6 nFrequency;
u16 nVoice;
CHAR* szVoiceString
CHAR* szLibLocation
Ul6 nOutputDataType;
Ul6 nlnputDataType;
TTSCallBacks cbFuncs;
CHAR* szProxyServer;
u32 nProxyPortNumber;
CHAR* szCachePath;
Uu32 nCacheTotalSizeMb;
U32 nCacheEntryMaxSizeMb;
u32 nCacheEntryExpTimeSec;
Uu32 nCachel.LowWaterMB;
int bCache;
} TTSPARM;
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide

Chapter IV/76

Structure members

nlanguage

szLanguageString

nOutputType

nFrequency

nVoice

szVoiceString

szLibl.ocation

nOutputDataType

nlnputDataType
cbFuncs

Language to use, a value of
TTS_LANG_USE_STRING
instructs the API to use
szLanguageString instead of
nlanguage

String specifying language to
use (valid when nLanguage =
TTS_LANG_USE_STRING).
e.g. “American English”
Output type to use. Possible
values: TTS_LINEAR_16BIT
(16-bit linear),
TTS_MULAW_8BIT (mu-law)
ot TTS_ALAW_8BIT (A-law)
Frequency to use. Possible
values: TTS_FREQ_S8KHZ
(8kHz), TTS_FREQ_11KHZ
(11kHz) ot
TTS_FREQ_22KHZ (22kHz)
Integer specifying the voice to
use, setting the value equal to
TTS_VOICE_USE_STRING
instructs the API to use the
szV oiceString member instead of
nl oice

String specifying voice to use
(only valid when 71 vice =
TTS_VOICE_USE_STRING).
e.g. “Jennifer”

Location of the engine libraries
and databases; it should specify
the path to the speech
subdirectory of the RealSpeak
installation directory (the latter
one is specified by
$SSFTTTSSDK or
%SSFTTTSSDK%) Specifying
the installation directory itself
also works. Only in
client/server mode, this
member can be set to NULL,
and then the client will use the
SSFTTTSSDK environment
variable. The specified value is
never used by the server engine
instance. The server uses the
SSFTTTSSDK parameter
specified in the server
configuration file.

Not in use.

Not in use.

Pointers to application callback

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter IV/77

functions, see TTSCallBacks
data type topic for more details

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/78

TTS_PARAM

The following structure members are new for this release:

szProxyServer

nProxyPortNumber

szCachePath

nCacheTotalSizeMb

nCacheEntryMaxSizeMb

nCacheEntryExpTimeSec

nCachelLowWaterMB

bCache

String specifying proxy server to
use. This value can be NULL
when no proxy server is
available.

The port number of the proxy
server to use. Has only to be
specified when szProxyServer is
not equal to NULL.

String specifying the path of the
cache. Subdirectory \cache is
created automatically and should
not be included in the cache
path. Only required when
bCache = true.

The total size of the cache in
Mb. Only required when bCache
= true.

The maximum size a cache entry
can have. Only required when
bCache = true.

Maximum amount of time any
individual cache entry will
remain in the cache, in seconds.
Only required when bCache =
true.

The minimum size the cache can
have; everything above this
threshold will be cleaned up
after each action. This value can
be 0.

Enable or disable the cache.
When enabling the cache, the
following structure members
must have a value different from
0: nCacheTotalSizeMb,
nCacheEntryMaxSizeMb,
nCacheEntryExpTimeSec,
nCachelLowWaterMB,
szCachePath.

TTS_PARAM is used to indicate the parameter type when calling
TtsSetParam(s) and TtsGetParam(s). The members
TTS_LANGUAGE_PARAM and TTS_VOICE_PARAM are

introduced in version 4.0.

typedef enum

{
TTS_LANGUAGE_PARAM,
TTS_VOICE_PARAM,
TTS_VOLUME_PARAM,

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter IV/79

TTS_RATE_PARAM,

TTS_PITCH_PARAM, /* NOT SUPPORTED
IN REALSPEAK */

TTS_DOCUMENT_TYPE_PARAM,

TTS_VOLUME_LARGESCALE_PA

RAM,

TTS_RATE_LARGESCALE_PARA

M’

TTS_MARKUP_TYPE_PARAM,

TTS_OUTPUT_TYPE_PARAM,

TTS_MARKER_MODE_PARAM,

TTS_BLADE_ENABLE_PARAM,

TTS_BLADE_DISABLE,

TTS_LICENSE_MODE_PARAM,

TTS_RULESET_LOAD_PARAM

TTS_RULESET_UNLOAD_PARAM

TTS_TOTAL_PARAMS

} TTS_PARAM;

TTS_PARAM_VALUE_T

TTS_PARAM_VALUE_T union type is used as a storage place for
the value of a parameter that is specified via a TTS_PARAM typed
structure.

typedef union TTS_PARAM_VAL U {
{

u32 nNo;
TTS_PARAM_VAIL_ARRAY_T array;
VOID * pObj;
HTTSMAP hMap

} TTS_PARAM_VALUE_T;
With

typedef struct TTS_PARAM_S {
{

ul16 nValue;
void* pValue
}

TTS_PARAM_VAL_ARRAY_T;

TTS_PARAM_T

TTS_PARAM_T describes one parameter name, parameter value
couple. This data structure is defined in the header file lh_ttsso.h. See
the description of the TTS_PARAM type for a list of possible values
for the nParam field.

typedef struct TTS_PARAM_S {

{
TTS_PARAM nParam;

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/80

TTS_ PARAM_VALUE_T paramValue;
} TTS_PARAM_T;

TTS_FETCHINFO_T

TTS_FETCHINFO_T is used to provide all the information to load
(fetch) or unload a ruleset.

typedef struct

{

const chatr* szUri;

const char* szContentType;
HTTSMAP hFetchProperties;

+ TTS_FETCHINFO_T,;

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/81

Structure members

szUri

String (zero-terminated) specifying the location of
the ruleset document. This can be an http address
(http://) or a file name (regular or with file://).

szContentType

hFetchProperties

SpeakData (PSpeakData)

String specifying the content-type of the ruleset.
It's optional: specify NULL if not used.
By default the content-type is assumed to be
"application/x-realspeak-rettt+text" (see definition
of RULESET _MIME_RETTT TEXT in
"lh_inettypes.h".
szContentType can have the following constants as
value:
Value File type
RULESET_MIME_RETTT_TEXT Textual
RETTT
ruleset
Note that the character set does not need to be
specified.
Warning: rulesets must be encoded in the native
character set for the TTS language specified in the
header section of the ruleset.
See the table in the “RealSpeak Languages”
appendix for an overview of the native character
set for each language.
Used to set the properties of the fetch (note that
some properties like for instance URL._BASE are
also used for file fetching). The properties are
stored in a map; the functions TtsMapCreate,
TtsMapDestroy, TtsMapSetChar, TtsGetChar etc.
are used to maintain the map. The list of available
properties can be found in the header file
“lh_inettypes.h” (for example
SPIINET_URL_BASE to supportt relative URI's
and filenames and
SPIINET_TIMEOUT_DOWNLOAD to set the
fetch timeout.)
It's optional: specify NULL if not used.

SpeakData is used when calling TtsProcessEx. It is used to describe
the location of the input data for a text to speech action and its
properties. Note that it is still possible to use the source call-back
method; in this case the #77 and data structure members should be set

to NULL.

PSpeakData is a pointer to a SpeakData structure.

typedef struct

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 1V/82

{

char* uri;

VOID* data;

u32 lengthBytes;
char* contentType;
HTTSMAP fetchProperties;
HTTSVECTOR tetchCookieJar;

} SpeakData, *PSpeakData;

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/83

Structure memibers

uri

data

lengthBytes

String specifying the location of the input
data. This can be an http address
(http://)or a file name (regular or with

file:/ /). Since file context can be interpreted
based on the file extensions, file extensions
are required. The following file extensions
are interpreted and the file content is read
as defined in the following table (set
contentType to NULL unless you want to
overwrite this behavior):

Extension Content read as
Xt Text file
xml 4sml file
.ssml 4sml file

Set the uri member to NULL to indicate
that the input data is provided via the data
member or the source call-back.

Pointer to buffer containing the input text.
This structure member will be used only
when uri is NULL. Set both uti and data to
NULL to use the source callback function.
The length of the data buffer in bytes.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter 1V/84

contentType

fetchProperties

fetchCookieJar

String that describes the type of content of
data. This string must be specified when a
file with unsupported file extension is
included in the uri string or when using the
data member: for more info see the
description of the uri member.

contentType can have the following values.
Remark: the string values are case-sensitive;
capitals are not supported.

Value Content
“default” Text file
“text/plain” Text file.

“text/plain;charset= Text file. It’s

<charset>" optional to add a
specification of the
character set.
Example:
“text/plain;charset=
windows-1252”

See the table below
for an overview of
some of the
supported character
sets.

“application/synthe 4sml file.

sistssml”

“application/ssml+ 4sml file.
xml”

“text/xml” 4sml file.

Used to set the properties of the fetch. The
properties are stored in a map; the
functions TtsMapCreate, TtsMapDestroy,
TtsMapSetChar, TtsMapGetChar etc. are
available to manipulate a map. The list of
available properties can be found in the
header file Ih_inettypes.h

For internal use.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary

Chapter 1V/85

The supported abstract character set varies by language. But note that
an abstract character set is distinct from a coded character set. In fact
RealSpeak supportts all coded character sets supported by the ICU
transcoding component for all languages as long as the input text only
contains characters that can be transcoded to the native coded
character set of the language of the input. See the “RealSpeak
languages™ appendix for a list of the native character set for each
language.

Some examples are listed below.

Coded Character set Languages Notes
UTF-8 All languages
UTF-16 All languages If the byte order

mark is missing,
big-endian is
assumed.

ISO-8859-1 Western languages
windows-1252 Western languages
EUC-jp (synonym: Japanese

EUC)

Shift-]JIS Japanese

The ICU component which is used to perform the transcoding from
the input character set to the native character set is a third-party
component. For more information see also the “Copyright and
Licensing for third party software” appendix.

For more information about the character sets for the contentType
parameter, take a look at the following websites:

e The ICU website:
http:/ /www-306.ibm.com/software/globalization/icu
® www.iana.org/assignments/character-sets

Note that in fact RealSpeak supports all character sets supported by
the ICU component for all languages as long as the input text only
contains characters that can be transcoded to the native character set
of the language of the input. For example an input text

Remark:

The application cannot specify the contenttype/charset argument
when using the TTSSOURCECB source callback mechanism: the
character set is then chosen by the TTS system based on the active
language; see the “RealSpeak languages” appendix for the native
character set for each language. In that case, the application has to
make sure that the input text character set matches this character set.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/86

DictionaryData, (PDictionaryData)

DictionaryData is used when calling TtsL.oadUstDictEx,
TtsUnloadUsrDictEx or TtsEnableUstDictEx(). It is used to describe
the properties of a dictionary instance. PDictionaryData is a pointer
to a DictionaryData structure.

typedef struct

{

U32 version;

char* uri;

VOID* data;

U32 lengthBytes;
char* contentType;
HTTSMAP fetchProperties;
HTTSVECTOR tetchCookieJar;

} DictionaryData, *PDictionaryData;

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/87

Structure members

version Dictionary version.

uri String specifying the location of a dictionary
this can be an http address (http://)or a file
name (regular or with file://). Since file
context can be interpreted based on the file
extensions, file extensions are required. The
following file extensions are interpreted and
the file content is read as defined in the
following table (set contentType to NULL
unless you want to overwrite this behavior):

Value Content read as
dct Text file.

.tde Text file.

.bct Binary file.

.the Binary file.

Set the uri member to NULL to indicate that
the input data is read from the data member.

data Pointer to data stream. This structure
member will be used when uri is NULL.

lengthBytes The length of the data stream in bytes.

contentType String that describes the type of content of

data. This string must be specified when a
file with unsupported file extension is
specified by the uri structure member or
when working with the data component.

contentType can have the following
constants as value:

Value File type

DCT_MIME_EDCT_TEXT Text

DCT_MIME_EDCT Binary
fetchProperties Used to set the properties of the fetch if an

URL is specified. The properties ate stored in

a map; the functions TtsMapCreate,

TtsMapDestroy, TtsMapSetChar,

TtsGetChar etc. are used to maintain the

map. The list of available properties can be

found in the header file Ih_inettypes.h
fetchCookieJar For internal use.

G2P_DICTNAME
G2P_DICTNAME is used to represent a G2P dictionary.

typedef char
G2P_DICTNAME[MAX_G2P_DICTNAME_LENGTH]

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/88

TTS_ Marker

TTS_Event

TTS_Marker provides bit masks for all marker types. By bitwise
or’ing the types of interest, an integer is created that can be used to
specify the TTS_ MARKER_MODE_PARAM parameter via the
TtsSetParam(s) functions. Only the corresponding event types will be
issued by the event callback function. However, SENTENCEMARK
events are always generated.

typedef enum TTS_Marker

{

TTS_MRK_SENTENCE = 0x0001,
TTS_MRK_WORD = 0x0002,
TTS_MRK_PHONEME = 0x0004,
TTS_MRK_BOOK = 0x0008,
TTS_MRK_PARAGRAPH = 0x0200

} TTS_Marker;

TTS_Event defines all event types that can be caught by the
TTSEVENTCB callback function.

typedef enum TTS_Event

{
TTS_EVENT_SENTENCEMARK,
TTS_EVENT _BOOKMARK,
TTS_EVENT_WORDMARK,
TTS_EVENT_PHONEMEMARK,
TTS_EVENT_PARAGRAPHMARK,
} TTS_Event;

Events normally mark the beginning of a particular kind of data
(sentence, word...) in the audio output. But an event will also be
issued when the audio output reaches the position of a book mark
inserted in the input text.

TTS_EVENT _BOOKMARK Marks the position of a user
book mark; book marks can
be inserted in the input text
via the SSML <mark>
element or the RealSpeak
<esc>\mrk=x\ tag.

The type TTS_BookMark is
be used to store the marker’s
properties.

TTS_EVENT_SENTENCEMARK Marks the beginning of a
sentence.

The type TTS_SentenceMark
is be used to store the
market’s properties.

TTS_EVENT_WORDMARK Marks the beginning of a
word.

The type TTS_WordMark is

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 1V/89

TTS_EVENT_PARAGRAPHMARK

TTS_EVENT_PHONEMEMARK

used to store the marker’s
properties.

Marks the beginning of a
paragraph.

The type TTS_ParagraphMark
is be used to store the
marker’s properties. Note that
paragraph markers are only
issued when paragraphs have
been marked in the input text
via the paragraph tag (native
<ESC>\p\ tag or SSML <p>
element).

Marks the beginning of a
phoneme.

The type TTS_PhonemeMark
is be used to store the
marker’s properties.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter 1V/90

TTS_ MarkPos

TTS_MarkPos describes the common properties of a marker. This
structure is part of a marker structure that describes a particular kind
of marker (TTS_BookMark, TTS_PhonemeMark...).

typedef struct TTS_MarkPos {

{

U32 nlnputPos;
U32 nlnputlen;
U32 nOutputPos;
U32 nOutputLen;

} TTS_MarkPos;
Structure members
nlnputPos Start position of input (sentence,

word...) in bytes. Start position is
counted from beginning of

message.

nlnputlen Length of input (sentence,
word...) in bytes.

nOutputPos Start position of output (sentence,

word..) in bytes. Start position is
counted from beginning of
message.

nOutputlLen Length of output (sentence,
word...) in bytes.

Not every marker type supports the four attributes. Here’s an
overview of which TTS_EVENT event type is supporting what kind
of data:

Event type nlnput nlnput nOutput nOutput
(excl. TTS_EVENT Pos Len Pos Len
prefix)

BOOKMARK Yes No Yes No
SENTENCEMARK Yes Yes Yes No
WORDMARK Yes Yes Yes No
PARAGRAPH MARK Yes No Yes No
PHONEMEMARK No No Yes Yes

TTS_BookMark

TTS_BookMark describes the parameters for a bookmark marker.
This structure is passed to TTSEVENTCB callback when the event is
TTS_EVENT_BOOKMARK.

It is important to note that RealSpeak Telecom 4.0 only supports
numerical bookmarks.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter IV/91

typedef struct TTS_BookMark {
const char * szID;
TTS_MarkPos mrkPos;
} TTS_BookMark;

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/92

TTS_PhonemeMark

TTS_PhonemeMark describes the parameters for a phoneme marker.
This structure is passed to TTSEVENTCB callback when the event is
TTS_EVENT_PHONEMEMARK.

typedef struct TTS_PhonemeMark {
const char * szID;
TTS_MarkPos mrkPos;
} TTS_PhonemeMark;

TTS_SentenceMark

TTS_SentenceMark describes the parameters for a sentence marker.
This structure is passed to TTSEVENTCB callback when the event is
TTS_EVENT_SENTENCEMARK.

typedef struct TTS_SentenceMark {
TTS_MarkPos mrkPos;
} TTS_BookMark;

TTS_ParagraphMark

TTS_ParagraphMark describes the parameters for a paragraph
marker. This structure is passed to TTSEVENTCB callback when the
event is TTS_EVENT_PARAGRAPHMARK.

typedef struct TTS_ParagraphMark {
TTS_MarkPos mrkPos;
} TTS_ParagraphMark;

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/93

TTS_WordMark

TTS_WordMark describes the parameters for a word marker. This
structure is passed to TTSEVENTCB callback when the event is
TTS_EVENT_WORDMARK.

typedef struct TTS_WordMark {
TTS_MarkPos mrkPos;
} TTS_WordMark;

Structure members

All marker structures have the following structure members in
common:

szID Currently not used (for
Bookmark and Phoneme
markers only)

mrkPos Struct that describes the data
values for one marker.
Consists of nlnputlen,
nlnputValue, nOutputlen and
nOutputValue.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/94

Function Descriptions

TtslnitializeEx

Syntax:

TTSRETVAL TtslnitializeEx(
HTTSINSTANCEX* tts_handle,
LH_SDK_SERVER* server,
TTSPARM* IpTtsParms,
void* IpAppData)

Purpose: Initializes an instance of the TTS engine instance on the
server specified by the server parameter. The engine is created
according to the information specified in the IpTtsParms parameter.
When operating in local or in-process mode, pass NULL for the
server parameter.

To create an instance in Client/Server mode, you must call
TtsCreateEngine before calling TtsInitializeEx.

Parameters:

tts_handle [out] This pointer receives the
handle for the newly created
TTS engine instance. This
handle is passed to other TTS
functions to identify the instance

server Pointer to a server information
structure, which has been
initialized by a call to
CreateEngine(Set to NULL if
not in client/server mode)

IpTtsParms This is a pointer to a structure
whose members are used to
control certain aspects and
behaviors of the created engine.
Some members of this struct
must be filled in; check the
TTSPARM struct information
for more details.

IpAppData Application specific data that is
passed back to the application
each time one of the callbacks is
invoked.

Error codes: This function can return license related errors. See
TtsResourceAllocate() for more info.

RealSpeak Telecom SDK V4.0

Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 1V/95

TtsInitialize
Syntax:

TTSRETVAL Ttslnitialize(
HTTSINSTANCE* phTtslnst,
LH_SDK_SERVER* pServer,
TTSPARM* pTtsParms,
void* pAppData)

Purpose: Initializes an instance of the TTS engine instance on the
server specified by the pServer parameter. The engine is created
according to the information specified in the pTtsParms parameter.
When operating in local or in-process mode, pass NULL for the
pSetver parameter.

To create an instance in Client/Server mode, you should call
TtsCreateEngine before calling TtsInitialize.

Parameters:

phTtslnst [out] This pointer receives the
handle for the newly created
TTS engine instance. This
handle is passed to other TTS
functions to identify the instance

pServer Pointer to a server information
structure, which has been
initialized by a call to
CreateEngine(Set to NULL if
not in client/server mode)

pTtsParms This is a pointer to a structure
whose members are used to
control certain aspects and
behaviors of the created engine.

pAppData Application specific data that is
passed back to the application
each time one of the callbacks is
invoked.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/96

TtsUninitialize

Syntax:
TTSRETVAL TtsUninitialize HTTSINSTANCE hTtsInst)

Purpose: Frees all system resources associated with an engine
instance. Note that this function does not unload user dictionaries;
that must be done using TtsUnloadUstDict.

Parameters:

hTtsInst Handle to a TTS engine instance

Error codes: This function can return license related errors. See
TtsResourceFree() for more info.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/97

TtsProcessEx

Syntax:

TTSRETVAL TtsProcessEx (
HTTSINSTANCE tts_handle,
const SpeakData * pSpeakData)

Purpose: Convert input text data into speech of the previously
specified output format. The input data properties can be described
via the pSpeakData argument. To use the source call-back, set the
structure members specifying the input (#r/ and data) to NULL.

Parameters:
hTtsInst Handle to a TTS engine instance
pSpeakData Pointer to SpeakData typed

structure, which describes where
the input data for text to speech
can be found and its properties.
Refer to the SpeakData structure
type description for more
details.

Error codes: This function can return licensing related errors. See
TtsResourceAllocate() for more info.

Remark: When using the TtsProcessEx function, the TTS input
method is determined as follows: first the #7 SpeakData structure
member is checked: if it’s non-NULL the specified URI is used, else
the data member is checked: if it’s non-NULL, the specified buffer is
used. Only when both the #7 and the data member are NULL, the
source callback function of type TTSSOURCECB is used.

Refer to the description of the SpeakData structure for more details
about the supported character sets for the input text data.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 1V/98

TtsProcess

Syntax:
TTSRETVAL TtsProcess (HTTSINSTANCE hTtsInst)

Purpose: Convert input text data into speech of the previously
specified output format. The input data is received from the
application through the TTSSOURCECB callback. The speech data is
delivered using the TTSDESTCB destination callback. The function
returns either when all the speech data has been delivered or when
the data delivery has been stopped by a call to TtsStop. The format of
the output data can be specified when initializing the engine, and the
speech can be tuned via calls to TtsSetParam (e.g. set the volume, the
rate, the voice).

Parameters:

hTtsInst Handle to a TTS engine instance

The input text retrieved via the source callback must be encoded in
the native character set for the active language. Refer to the
“RealSpeak Languages” appendix for the native character set for each
language.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter IV/99

TtsStop
Syntax:
TTSRETVAL TtsStop(HTTSINSTANCE hTtsInst)

Purpose: Stops the Text-To-Speech conversion process initiated by a
call to TtsProcess() or TtsProcessEx(). Since the process functions
are synchronous (blocking), the TtsStop function must be called from
a different thread than the one that called the TtsProcess(Ex)
function. The TtsStop function always succeeds unless the engine
instance is not speaking.

Parameters:

hTtsInst Handle to a TTS engine instance

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/100

TtsSetParam

Syntax:

TTSRETVAL TtsSetParam(
HTTSINSTANCE hTtsInst,
U16 nParam,
U16 nValue

Purpose: Sets a TTS engine instance parameter to a specified value.
When the parameter change will take effect depends on the parameter
that is being set; when setting TTS_VOLUME_PARAM or
TTS_RATE_PARAM, the change will take effect almost immediately.
This function may be called while the TtsProcess(Ex) function is
processing, but some parameters cannot be changed while
TtsProcess(Ex) is active (e.g. language, voice, document type, markup
type, output type, marker mode).

If you want to set more than one parameter in one go, and one of the
parameters to be set is the document type, always set the document
type first before setting the other parameters. Otherwise, the change
to the other parameter might fail.

Notes:

e When using e-mail preprocessing, word-by-word and line-by-
line read mode is not available

e In a client/server environment, the default rate and volume is
set in RealSpeak Server configuration file (see “Configuration
Files” section of “User Configuration” chapter). 1f the rate or
volume is set through this API call, the new value overrides
those defaults. Similarly, if the rate or volume is set through
markup in the input text, those values override both the
RealSpeak Server default and the value set via the API for
that (and only that) speak request.

Parameters:
hTtsInst Handle to a TTS engine instance
nParam Parameter to set
nValue Value to set

On the next page is a table of currently supported parameters and
some of their corresponding default values:

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter IV/101

Parameter

Acceptable Values

Default Value

TTS_LANGUAGE_PARAM

ASCII character string
value stored in the
paramValue.array

tield; language name.

TTS_VOICE_PARAM

ASCII character string
value stored in
paramValue.array
field; voice name. Be
careful to use an
existing voice
name/language
combination!

TTS_VOLUME_PARAM

0 to 9 (inclusive)

8

TTS_RATE_PARAM

1 to 9 (inclusive)

5

TTS_DOCUMENT_TYPE_P

DOC_NORMAL,

DOC_NORMAL

ARAM DOC_EMAIL
TTS_VOLUME_LARGESCA . .
LE_PARAM 0 to 100 (inclusive) 80
TTS_RATE_LARGESCALE_ . .
PARAM 1 to 100 (inclusive) 50
TTS_MARKUP_TYPE_PAR | MARKUP_NONE,
AM MARKUP_4SML MARKUP_NONE
TTS_OUTPUT_TYPE_PAR 0.1.2
AM >

TTS_MARKER_MODE_PA
RAM

TTS_MRK_SENTE
NCE |
TTS_MRK_BOOK |
TTS_MRK_PARAG
RAPH

TTS_BLADE_ENABLE_PA
RAM

Currently not used

TTS_BLADE_DISABLE

Currently not used

LICENSE_MODE_

TTS_LICENSE_MODE_PA DEFAULT, LICENSE_MODE_
RAM LICENSE_MODE_E DEFAULT
XPLICIT
Pointer to

TTS_RULESET LLOAD_P
ARAM!

TTS_FETCHINFO _
T structure stored in
paramValue.pObj
tield (see “User
Rulesets” section in
the “User
Configuration”
chapter for more
details)

No rulesets atre loaded

TTS_RULESET _UNLOA
D _PARAM?

Pointer to
TTS_FETCHINFO_

1 Note that TTS_RULESET_LOAD_PARAM and TTS_RULESET_UNLOAD_PARAM are
parameters that can only be specified in TtsSetParam or TtsSetParams call and never in
a TtsGetParam or TtsGetParams call.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter 1V/102

T structure stored in
paramValue.pObj
field (see “User
Rulesets™ section in
the “User
Configuration”
chapter for more
details)

2 See the previous footnote.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/103

TtsGetParam

Syntax:

TTSRETVAL TtsGetParam(
HTTSINSTANCE hTtsInst,
U16 nParam,
U16* pnValue)

Purpose: Gets the value of a given parameter. See TtsSetParam for a
list of supported parameters and possible values.

The TtsGetParam and TtsSetParam functions operate independently
of the escape sequences that can also be used to set the volume and
rate. Calls to TtsGetParam will not reflect parameter changes that
result from escape sequences embedded in the input text. The effect
of playing pre-processed email text will also not be reflected in the
values returned by the TtsGetParam function.

Parameters:
hTtsInst Handle to a TTS engine instance
nParam Specifies which parameter value
to retrieve
nValue [out] Current value of nParam
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide

Chapter 1V/104

TtsSetParams

Syntax:

TTSRETVAL TtsSetParams(
HTTSINSTANCE hTtsInst,
TTS_PARAM_T* pParamList,
U16 nParamNb)

Purpose: Sets one or more TTS engine instance parameters to a
specified value. When the parameter change will take effect depends
on the parameter that is being set; when setting
TTS_VOLUME_PARAM or TTS_RATE_PARAM, the change will
take effect almost immediately. This function may be called while the
TtsProcess(Ex) function is processing, but some parameters cannot
be changed while TtsProcess(Ex) is active (e.g. language, voice,
document type, markup type, output type, marker mode).

Notes:

o See TtsSetParam note on the default rate and volume in a
client/server environment.

Parameters:
hTtsInst Handle to a TTS engine instance
pParamlList List of parameters to set
nParamNb Number of parameters to set

For a table of currently supported parameters and their
corresponding values, see TtsSetParam.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter IV/105

TtsGetParams

Syntax:

TTSRETVAL TtsGetParams(
HTTSINSTANCE hTtsInst,
TTS_PARAM_T* pParamList,
U16 nParamNb)

Purpose: Gets the values of given parameters. See TtsSetParam for a
list of supported parameters and possible values.

The TtsGetParam(s) and TtsSetParam(s) functions operate
independently of the escape sequences that can also be used to set the
volume and rate. Calls to TtsGetParams will not reflect parameter
changes that result from escape sequences embedded in the input
text. The effect of playing pre-processed email text will also not be
reflected in the values returned by the TtsGetParam function.

Parameters:
hTtsInst Handle to a TTS engine instance
pParamList Specifies which parameter values
to retrieve
nParamNb Number of parameters to
retrieve
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide

Chapter 1V/106

TtslLLoadUsrDictEx

Syntax:

TTSRETVAL TtsLoadUstDictEx (
HTTSINSTANCE hTtsInst,

const DictionaryData* dictionary,
HTTSDCTEG* phDctEg)

Purpose: Loads a user dictionary instance into memory. The
dictionary is implicitly enabled with the default priority (see
TtsEnableUsrDictEx for making dictionaries explicitly enabled with a
chosen priority). In Client/Server mode, the dictionary is loaded on
the server. The file format of a dictionary is described in the “User
Configuration” chapter.

Each dictionary instance is initialized with the default (lowest)
priority. All dictionaty instances must have a different priority (except
the default priority, which can be used by several dictionaries). The
priority can be set by TtsEnableUsrDictEx() 1f two dictionaries have
the default priority, the order in which the dictionaries are loaded is
important. The last loaded dictionary has the ‘highest’ priority. This
means that when a token has to be processed, a lookup will take place
using the last loaded dictionary first.

Parameters:
hTtsInst Handle to a TTS engine instance
dictionary Const pointer to a dictionary
propetrties description.
phDctEg [out] Handle to a dictionary
instance.

The order in which dictionaries are looked up can be changed by
using TtsEnableUstrDictEx() and setting the priority to a different
value.

Remark

The dictionary is implicitly made enable for use with the default
priority; this behavior is different compared to TtsLoadUsrDict.

Refer to “User Configuration” chapter for more info.

RealSpeak Telecom SDK V4.0

Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter IV/107

TtslLLoadUstDict

Syntax:

TTSRETVAL TtsLoadUstDict (
LH_SERVER_INFO* pServer,
HTTSDICT* phUstDict,
char* szUserDict)

Purpose: Loads a user dictionary instance into memory. In order to
be used by a TTS engine instance, the dictionary must be enabled for
that instance by calling the TtsEnableUsrDict function. In
Client/Setver mode, the dictionary is loaded on the setver specified
by pServer. In local mode, the pServer parameter should be set to
NULL. The dictionary is a file whose format is described in “User
Configuration” chapter.

Parameters:
pServer Pointer to a server information
structure. To open a local
dictionary, set this parameter to
NULL
phUsrDict [out] Handle to the loaded
dictionary instance.
szUstDict Fully qualified pathname to the
user dictionary that will be
loaded
Remark

The dictionary is only loaded into memory and not made implicit
enabled; this behavior is different compared to TtsLoadUsrDictEx.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 1V/108

TtsUnloadUsrDictEx
Syntax:

TTSRETVAL TtsUnloadUstDictEx(
HTTSINSTANCE hTtsInst,
HTTSDCTEG hDctEg)

Purpose: Unloads a user dictionary instance, freeing the resources
associated with it. As opposed to TtsUnloadUsrDict, a user dictionary
instance can be unloaded when it is enabled; a user dictionary is either
enabled implicitly by TtsLoadUstDictEx or explicitly by

TtsEnableUstDictEx.
Parameters:
hTtsInst Handle to a TTS engine
instance.
hDctEg Handle to a dictionary instance.

Refer to “User Configuration” chapter for more info.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/109

TtsUnloadUsrDict
Syntax:
TTSRETVAL TtsUnloadUstDict(HTTSDICT hUstDict)

Purpose: Unloads a user dictionary, freeing the resources associated
with it. This function will fail if the dictionary is enabled by an engine
instance. If the dictionary is enabled then call TtsDisableUstDict to
disable the dictionary.

Parameters:
hUstDict Handle to the loaded dictionary
that will be unloaded
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter IV/110

TtsEnableUsrDictEx

Syntax:

TTSRETVAL TtsEnableUsrDictEx(
HTTSINSTANCE hTtsInst,
HTTSDCTEG hDctEg,
U32 priority)

Purpose: Enables a user dictionary instance and/or changes its
priority on a TTS engine instance.

Once a dictionary instance has been loaded by TtsLoadUstrDictEx()
on a TTS engine instance, the default priority has been attached; the
dictionary is enabled with default (lowest) priority.

To change the default priority, the dictionary has to be disabled by
calling TtsDisableUsrDictEx and enabled again by calling
TtsEnableUsrDictEx().

TtsEnableUsrDictEx() can also be called to enable a dictionary again
that has been disabled by a previous call of TtsDisableUsrDictEx().
If a dictionary instance has been opened in Client/Setver mode then
it can only be enabled for an instance that was created on the same
server as the dictionary. Once a dictionary has been loaded using the
TtsLoadUsrDictEx function, it can be enabled for use by only one
TTS engine instance at a time; if two instances want to use the same
dictionary then the dictionary must be loaded separately for each
instance. Each dictionary has a unique priority; no two dictionaries
can have the same priority at the same time except the default
priority. The highest possible priority value is 0; the higher the
priority, the lower the value of the priority parameter should be.

Parameters:
hTtsInst Handle to a TTS engine
instance.
hDctEg Handle to a loaded dictionary
instance
ptiority Sets the priority for the
dictionary instance.
Remark:

Always call TtsDisableUsrDict(s)Ex before calling
TtsEnableUstDictEx.

Refer to “User Configuration” chapter for more info.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter IV/I 11

TtsEnableUsrDict

Syntax:

TTSRETVAL TtsEnableUstDict(
HTTSINSTANCE hTtsInst,
HTTSDICT hUstDict)

Purpose: Enables a user dictionary on a TTS engine instance. If a
dictionary has been opened in Client/Server mode, it can only be
enabled for an instance that was created on the same server as the
dictionary. Once a dictionary has been loaded using the
TtsLoadUsrDct function, it can be enabled for use by only one
engine instance at a time. If two instances want to use the same
dictionary then the dictionary must be loaded and enabled separately
for each instance.

Parameters:
hTtsInst Handle to a TTS engine
instance.
hUstDict Handle to a loaded dictionary
instance
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter IV/112

TtsDisableUsrDictEx

Syntax:

TTSRETVAL TtsDisableUstrDictEx(
HTTSINSTANCE hTtsInst,
HTTSDCTEG hDctEg)

Purpose: Disables a user dictionary instance on a TTS engine
instance. The dictionary instance must first have been enabled for use
by the instance using TtsEnableUsrDictEx or TtsLoadUsrDictEx.
Note that disabling the dictionary does not unload it from memory.
To unload a dictionary, use the TtsUnloadUsrDictEx function.

Parameters:
hTtsInst Handle to a TTS engine
instance.
hDctEg Handle to a loaded dictionary
instance
Remark:

Always use this function before calling TtsEnableUsrDictEx.

Refer to “User Configuration” chapter for more info.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/113

TtsDisableUsrDict
Syntax:

TTSRETVAL TtsDisableUsrDict(
HTTSINSTANCE hTtsInst,
HTTSDICT hUstDict)

Purpose: Disables a user dictionary instance on a TTS engine
instance. The dictionary must first have been enabled for use by the
instance using TtsEnableUsrDict. Note that disabling the dictionary
does not unload it from memory. To unload a dictionary, use the
TtsUnloadUsrDict function.

Parameters:
hTtsInst Handle to a TTS engine
instance.
hUstDict Handle to a loaded dictionary
instance
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter IV/1 14

TtsDisableUstrDictsEx

Syntax:
TTSRETVAL TtsDisableUstDictsEx(HTTSINSTANCE hTtsInst

Purpose: Disables all user dictionaty instances on a TTS engine
instance. The dictionary instances must first have been enabled for
use by the instance using TtsEnableUsrDictEx or TtsLoadUstDictEx.
Note that disabling the dictionaries does not unload them from
memory. To unload a dictionary, use the TtsUnloadUsrDictEx
function. To disable dictionaries one by one use
TtsDisableUsrDictEx.

Parameters:

hTtsInst Handle to a TTS engine
instance.

Refer to “User Configuration” chapter for more info.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter IV/115

TtsLoad G2PDictList
Syntax:
TTSRETVAL TtsLoadG2PDictList (
HTTSINSTANCE hTtsInst,
U32 u32NumDictNames,
G2P_DICTNAME* pG2PDictList)

Purpose: Loads a list of custom G2P dictionaries on a TTS engine

instance.
Parameters:
hTtsInst Handle to a TTS engine
instance.
u32NumDictNames Number of names in the array
pG2PDictList Pointer to an array of names to
enable
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter IV/116

TtsUnload G2PDictList

Syntax:

TTSRETVAL TtsUnloadG2PDictList (
HTTSINSTANCE hTtsInst,
U32 u32NumDictNames,
G2P_DICTNAME* pG2PDictList)

Purpose: Unloads a list of custom G2P dictionaries on a TTS engine

instance.
Parameters:
hTtsInst Handle to a TTS engine
instance.
u32NumDictNames Number of names in the array
pG2PDictList Pointer to an array of names to
disable
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter IV/117

TtsGetG2PDictTotal

Syntax:

TTSRETVAL TtsGetG2PDictTotal (
HTTSINSTANCE hTtsInst,
U32* pu32Total)

Purpose: Retrieves the total number of custom G2P dictionaties on
the system for the current language. This allows the user to allocate
appropriate memory for calling TtsGetlL.oadedG2PList.

Parameters:
hTtsInst Handle to a TTS engine
instance.
pu32Total [out] Total number of G2P
dictionaties
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter IV/118

TtsGetG2PDictList

Syntax:

TTSRETVAL TtsGetG2PDictList (
HTTSINSTANCE hTtsInst,
U32 u32NumAllocated,
G2P_DICTNAME* pG2PDictList,
U32* pu32NumRetreived)

Purpose: Gets the list of custom G2P dictionaries on the system for
the current language. Before calling this method, the user must call
TtsGetG2PDictTotal and allocate enough memory for the list.

Parameters:

hTtsInst Handle to a TTS engine
instance.

u32NumAllocated Number of G2P_DICTNAMEs
that can fit in the list

pG2PDictList [out] Pointer to a previously
allocated array of G2P
dictionary names that will be
filled

pu32NumRetreived [out] Number of names that
were actually put in the list

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter IV/119

TtsMapCreate
Syntax:
TTSRETVAL TtsMapCreate(HTTSMAP* phTtsMap)
Purpose: Create an empty map that can be used to store the fetch
properties specified in the SpeakData, DictData. or
TTS_FETCHINFO_T structures

Parameters:

phTtsMap Pointer to a handle to a TTS
Map instance.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/120

TtsMapDestroy
Syntax:
TTSRETVAL TtsMapDestroy(HTTSMAP hTtsMap)
Purpose: Destroys a map.

Parameters:
hTtsMap Handle to a TTS Map instance.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/121

TtsMapSetChar

Syntax:

TTSRETVAL TtsMapSetChar (
HTTSMAP hTtsMap,
const char* szKey,
const char* szValue)

Purpose: Set a named property of type string (char *) on a map. The
list of available properties can be found in the header file
lh_inettypes.h.

Parameters:
hTsMap Handle to a TTS Map instance.
szKey The name of the property.
szValue The value of the property
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter 1V/122

TtsMapSetU32

Syntax:

TTSRETVAL TtsMapSetU32 (
HTTSMAP hTtsMap,
const char* szKey,
U32 nValue)

Set a named property of type unsigned 32-bit integer (U32) on a map.
The list of available properties can be found in the header file
lh_inettypes.h.

Parameters:
hTsMap Handle to a TTS Map instance.
szKey The name of the property.
nValue The value of the property
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter 1V/123

TtsMapSetBool

Syntax:

TTSRETVAL TtsMapSetBool (
HTTSMAP hTtsMap,
const char* szKey,
int bValue)

Purpose: Set a named property of type boolean (int) on a map. The
list of available properties can be found in the header file
lh_inettypes.h.

Parameters:
hTsMap Handle to a TTS Map instance.
szKey The name of the property.
bValue The value of the property
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter 1V/124

TtsMapGetChar
Syntax:

TTSRETVAL TtsMapGetChar (
HTTSMAP hTtsMap,
const char* szKey,
char** pszValue)

Purpose: Gets a named property of type string (char *) from a map.
TtsMapGetChatr is responsible for the memory allocation of the

string.
Parameters:
hTsMap Handle to a TTS Map instance.
szKey The name of the property.
pszValue *pszValue The value of the
property
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter 1V/125

TtsMapFreeChar

Syntax:

TTSRETVAL TtsMapFreeChar (
HTTSMAP hTtsMap,
char* szValue)

Purpose: clean up the allocated memory in use by szValue. This
memory has been allocated by TtsGetMapChar .

Parameters:
hTsMap Handle to a TTS Map instance.
szValue The value of the property
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter 1V/126

TtsMapGetU32

Syntax:

TTSRETVAL TtsMapGetU32 (
HTTSMAP hTtsMap,
const char* szKey,
U32* pnValue)

Purpose: Gets a named property from a map. The value of the
property is a U32.

Parameters:
hTsMap Handle to a TTS Map instance.
szKey The name of the property.
pnValue The value of the property
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter IV/127

TtsMapGetBool

Syntax:

TTSRETVAL TtsMapGetBool (

HTTSMAP hTtsMap,
const char* szKey,
int* pbValue)
Purpose: Gets a property from a map. The value of the property is a
boolean.
Parameters:
HTsMap Handle to a TTS Map instance.
SzKey The name of the property.
PbValue The value of the property
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter 1V/128

TtsCreateEngine

Syntax:
TTSRETVAL TtsCreateEngine(LH_SDK_SERVER* pServer)

Purpose: Used only for Client/Server mode. In RealSpeak v3.5 this
function created an engine instance on the server. Currently the
creation of the engine instance is deferred until TtsInitialize() is
called; making this function essentially a NO-OP that is only
available for backward compatibility.

This function should only be called once for each engine instance to
be created. The LH_SERVER_INFO member of the
LH_SDK_SERVER data structure is used to specify the network
information necessaty to connect to the server. The other member of
the LH_SERVER_INFO data structure is a handle to the created
engine instance, which is filled in by the function. The fully initialized
structure is then passed to the TtsInitialize(Ex) function.

If the server resides locally, the IP address can be set to 127.0.0.1 or
‘localhost’ to specify the local host.

Parameters:

pSetver [in/out]Pointer to a server
information structure

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 1V/129

TtsRemoveEngine
Syntax:
TTSRETVAL TtsRemoveEngine(LH_SDK_SERVER* pServer)
Purpose: Used only for Client/Server mode. It removes an engine
instance from the server. When closing an engine instance, you
should first call the TtsUninitialize function to clean up engine
instance data.

Parameters:

pServer Pointer to a server information
structure

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/130

TtsResourceAllocate

Syntax:

TTSRETVAL TtsResourceAllocate (
HTTSINSTANCE hTtslnst,
const char* szFeature,
void* pReserved

Purpose:

Explicitly retrieve a license from the license server for a specified
RealSpeak instance.

Parameters
hTtsInst Handle to a TTS engine instance
szFeature The function is generic: use the constant
TTS_LICENSE, SPEAK for licensing functionality.
reserved This parameter is reserved for future use. Pass in NULL
Notes

The TTS_LICENSE_MODE_PARAM parameter must be set to
‘explicit’ for TtsResourceAllocate() to work. You can use
TtsGetParam() to retrieve the value of
TTS_LICENSE_MODE_PARAM and find out whether you need to
call this function (and explicitly allocate and free licenses) or not. If
the licensing mode is set to "default," the TtsInitializeEx() function
implicitly allocates a license for the T'TS engine instance and
TtsUnintialize() releases that license.

TtsResourceAllocate() may return the following error codes:

TTS_E_INVALIDPARAM An invalid feature parameter was specified
TTS_E_LIC_LICENSE_ALLOCATED A license has already been allocated for this
TTS engine instance.
TTS_E_WRONG_STATE A speak operation is active
TTS_E_LIC_NO_LICENSE There are no purchased licenses available
TTS_E_LIC_UNSUPPORTED The TTS_LICENSE_MODE_PARAM

parameter is not set to explicit.
See also

TtsResourceFree()

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter IV/131

TtsResourceFree

Syntax:

TTSRETVAL TtsResourceFree (
HTTSINSTANCE hTtslnst,
const char* szFeature,
void* reserved)
Purpose: Explicitly free the license for the specified Realspeak
instance.

Parameters
hTtsInst Handle to a TTS engine instance
szPeature The function is genetic: use
TTS_LICENSE, SPEAK to free a license
resetved This parameter is reserved for future use. Pass in
NULL.
Notes

The TTS_LICENSE_MODE_PARAM parameter must be set to
‘explicit’ for TtsResourceFree() to work.

TtsResourceFree() may return the following error codes:

TTIS_E_INVALIDPARAM An invalid feature parameter was specified

TTS_E _LIC LICENSE _FREED A license has already been freed for this TTS
engine instance.

TTS E_ WRONG_STATE A speak operation is active.

TTS _E _LIC NO_LICENSE Therte are no purchased licenses available
TTS_E _LIC_UNSUPPORTED TheTTS _LICENSE_MODE,_ PARAM
parameter is not set to explicit

See also

TtsResourceAllocate()

RealSpeak Telecom SDK V4.0

Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 1V/132

User Callbacks

TTSSOURCECB

This section describes the callbacks that the user (application) needs
to implement and register when using the RealSpeak SDK. Callbacks
are registered by passing their pointers in the TTSCallbacks typed
structure specified via the chFuncs TTSPARM member when
TtsInitialize or TtsInitializeEx is used..

Typedef TTSRETVAL (*TTSSOURCE)(
void* pAppData,
void* pDataBuffer,
U32 nBufferSize,
U32* pnDataSize);

Purpose: This callback is only invoked when the input streaming
mode of the TTS engine is enabled.

It is used by an engine instance to request a block of input text from
the application. The function is called multiple times, allowing an
unlimited amount of data to be delivered.

Each time the application puts data into pDataBuffer, the function
should return TTS_SUCCESS.

When there is no more input data for the current TTS action the
function should return TTS_ENDOFDATA. Then, the TTS engine
knows the previous input corresponded with the last input block for a
Speak action and the call-back will no longer be called until the
TtsProcess(Ex) function returns. Any data in the buffer when
TTS_ENDOFDATA is returned is ignored.

Parameters:
pAppData Application data pointer that
was passed into TtsInitialize
pDataBuffer [out] Pointer to a data buffer

that is to be filled with the input
text. This buffer is provided by
the callback function, no need to
allocate memory for it.

nBufferSize Size in bytes of the buffer
pointed to by pDataBuffer. This
is the maximum amount of data
that can be placed in
pDataBuffer

pnDataSize [out] Number of bytes that were
actually placed in the buffer

Return Values:

TTS_SUCCESS
TTS_ENDOFDATA

RealSpeak Telecom SDK V4.0

Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter IV/133

Remark: When using TtsInitializeEx, this callback should not be
registered unless both the #77 and data member of the SpeakData
structure can be NULL. This approach makes it possible to combine
the old TtsSource source callback function with the new
TtsProcessEx function.

When using the source call-back method, the input text must be
encoded with the native character set for the active language.
Other character sets are only supported if the input is specified via
the SpeakData structure. Refer to the description of the SpeakData
structure for an overview of all character sets or the “RealSpeak
Languages” appendix for a list of the native character sets.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/134

TTSDESTCB

Typedef void* (*TTSDESTCB)(
void* pAppData,
U16 nDataType,
void* pData,
U32 nDataSize,
U32* pnBufferSize);

Purpose: This callback is invoked when the TTS engine instance
needs to deliver output data to the application.

The main input parameters of the callback are the address of an
application-provided buffer containing output data and the size in
bytes of the data. The application provides the buffer for the engine
to fill using the return value of the function, which is a pointer to the
next buffer to be filled. The size of this application buffer is set in the
*pnBufferSize parameter before the function returns. The first call to
TTSDESTCB passes in NULL for the output buffer and 0 for the
data size, indicating that the TTS engine instance has not yet been
given a buffer to fill. This also occurs each time the engine has
tinished processing a message unit.

In the simplest case, the application allocates a single buffer and
returns its address every time, but the application might have a queue
of buffers to prevent unnecessary copying of data.

Parameters:

pAppData Application data pointer that
was passed into TtslnitializeEx
or TtsInitialize

nDataType Data type that is being delivered.
Currently only
TTS_OUTPUTTYPE_PCM is

supported
pData Pointer to the output data buffer
nDataSize Size of the buffer in bytes. For

optimal performance in client-
server mode, the buffer size

should be set to 4k (4096) bytes.

pnBufferSize [out] Size in bytes of the “new”
data buffer passed back via the
return value

Return Value(s):

Pointer to the next output buffer

RealSpeak Telecom SDK V4.0

Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter IV/135

TTSEVENTCB

Typedef TTSRETVAL *TTSEVENTCB)(
void* pAppData,
Void* pBuffer,
U16 nBufferSize,
U16 nEvent);

Purpose: This callback is used to return markers to the application.
Each marker represents a single event. There’s one call to
TTSEVENTCB for each separate marker. A marker is thrown before
the call to TTSDESTCB that delivers the first audio sample aligned
with it. In other words, the user receives the marker info in advance
of the corresponding speech.

The different event types are explained under the TTS_Event data
type topic.

The user has to specify which marker types he wants to receive. He
can do that by calling TtsSetParam() or TtsSetParams() for the
TTS_MARKER_MODE_PARAM parameter. See the description of
the TTS_Marker data structure for a description of the supported
marker types.

Note: The SENTENCEMARK marker is always generated.

Parameters:
pAppData Application data pointer that was passed into Ttslnitialize
pBuffer Pointer to a buffer containing an event type specific structure

providing the event related information; the type of the
structure for each event type is listed below.

Event type Structure type
TTS_EVENT_BOOKMARK TTS_BookMark
TTS_EVENT_PARAGRAPHMARK TTS_ParagraphMark
TTS_EVENT_SENTENCEMARK TTS_SentenceMark

TTS_EVENT_WORDMARK TTS_WordMark
TTS_EVENT_PHONEMEMARK TTS_PhonemeMark
nBufferSize Size of the buffer in bytes
nEvent Type of event that occurred. Can be one of the following:

TTS_EVENT_SENTENCEMARK,
TTS_EVENT_BOOKMARK, TTS_EVENT_WORDMARK,
TTS_EVENT_PHONEMEMARK,
TTS_EVENT_PARAGRAPHMARK

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1V/136

Error Codes

This is a list of all the possible error codes returned by RealSpeak
SDK methods:

TTS_SUCCESS,
TTS_ERROR,
TTS_E_WRONG_STATE,
TTS_E_SYSTEMERROR,
TTS_E_INVALIDINST,
TTS_E_BADCOMMAND,
TTS_E_PARAMERROR,
TTS_E_OUTOFMEMORY,
TTS_E_INVALIDPARM,
TTS_E_MISSING_SL,
TTS_E_MISSING_FUNC,
TTS_E_BAD_LANG,
TTS_E_BAD_TYPE,
TTS_E_BAD_OUTPUT,
TTS_E_BAD_FREQ,
TTS_E_BAD_VOICE,
TTS_E_NO_MORE_MEMBERS,
TTS_E_NO_KEY,
TTS_E_KEY_EXISTS,
TTS_E_BAD_HANDLE,
TTS_E_TRANS_EMAIL,
TTS_E_NULL_STRING,
TTS_E_INTERNAL_ERROR,
TTS_E_NO_MATCH_FOUND,
TTS_E_NULL_POINTER,
TTS_E_BUF_TOO_SMALL,

TTS_W_UDCT_ALREADYLOADED,
TTS_E_UDCT_INVALIDHNDL,
TTS_E_UDCT_NOENTRY,
TTS_E_UDCT_MEMALLOC,
TTS_E_UDCT_DATAFAILURE,
TTS_E_UDCT_FILEIO,
TTS_E_UDCT_INVALIDFILE,
TTS_E_UDCT_MAXENTRIES,
TTS_E_UDCT_MAXSOURCESPACE,
TTS_E_UDCT_MAXDESTSPACE,
TTS_E_UDCT_DUPLSOURCEWORD,
TTS_E_UDCT_INVALIDENGHNDL,
TTS_E_UDCT_MAXENG,
TTS_E_UDCT_FULLENG,
TTS_E_UDCT_ALREADYINENG,
TTS_E_UDCT_OTHERUSER,
TTS_E_UDCT_INVALIDOPER,
TTS_E_UDCT_NOTLOADED,
TTS_E_UDCT_STILLINUSE,
TTS_E_UDCT_NOT_LOCAL,

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter IV/137

TTS_E_UDCT_COULDNOTOPENFILE,
TTS_E_UDCT_FILEREADERROR,
TTS_E_UDCT_FILEWRITEERROR,
TTS_E_UDCT_WRONGTXTDCTFORMAT,
TTS_E_UDCT_LANGUAGECONFLICT,
TTS_E_UDCT_INVALIDENTRYDATA,
TTS_E_UDCT_READONLY,
TTS_E_UDCT_ACTIONNOTALLOWED,
TTS_E_UDCT_BUSY,
TTS_E_UDCT_PRIORITYINUSE,
TTS_E_UDCT_ALREADYENABLED

TTS_E_MODULE_NOT_FOUND,
TTS_E_CONVERSION_FAILED,
TTS_E_OUT_OF_RANGE,
TTS_E_END_OF_INPUT,
TTS_E_NOT_COMPATIBLE,
TTS_E_INVALID_POINTER,
TTS_E_FEAT_ EXTRACT,
TTS_E_MAX_CHANNELS,
TTS_E_ALREADY_DEFINED,
TTS_E_NOT_FOUND,
TTS_E_NO_INPUT_TEXT,

/* Client/Server errors */
TTS_E_NETWORK_PROBLEM,
TTS_E_NETWORK_TIMEOUT,
TTS_E_NETWORK_RETRANSMIT,
TTS_E_NETWORK_FUNCTION_ERROR,
TTS_E_QUEUE_FULL,
TTS_E_QUEUE_EMPTY,

TTS_E_ENGINE_NOT_FOUND,
TTS_E_ENGINE_ALREADY_INITTIALIZED,
TTS_E_ENGINE_ALREADY_UNINITIALIZED,
TTS_E_DICTIONARY_ALREADY_UNLOADING,
TTS_E_INSTANCE_BUSY,

TTS_E_NOTINITIALIZED,
TTS_E_NETWORK_CONNECTIONREFUSED,
TTS_E_NETWORK_OPENPORTFAILED,
TTS_E_NETWORK_SENDFAILED,
TTS_E_NETWORK_CONNECTIONCLOSED,
TTS_E_ENGINE_OVERLOAD,

TTS_E_UNKNOWN,

/* License Errors */
TTS_E_LIC_NO_LICENSE,
TTS_E_LIC_LICENSE_ALLOCATED,
TTS_E_LIC_UNSUPPORTED,
TTS_E_LIC_LICENSE_FREED,
TTS_E_LIC_SYSTEM_ERROR,

/* Non Fatal Errors or Warnings */

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary

Chapter 1V/138

TTS_W_WARNING,
TTS_W_ENDOFINPUT,

/* Inet Errors */

TTS_E_INET_FATAL,
TTS_E_INET_INPUTOUTPUT,
TTS_E_INET_PLATFORM,
TTS_E_INET_INVALID_PROP_NAME,
TTS_E_INET_INVALID_PROP_VALUE,
TTS_E_INET_NON_FATAL,
TTS_E_INET_WOULD_BLOCK,
TTS_E_INET_EXCEED_MAXSIZE,
TTS_E_INET_NOT_ENTRY_LOCKED,
TTS_E_INET_NOT_ENTRY_CREATED,
TTS_E_INET _UNSUPPORTED,
TTS_E_INET_UNMAPPED,
TTS_E_INET_FETCH_TIMEOUT,
TTS_E_INET_FETCH_ERROR,
TTS_E_INET_NOT_MODIFIED,

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter 1V/139

RealSpeak Telecom
Sottware Development Kit

Chapter V

SAPI5 Compliance

RealSpeak
V4.0 Manual

Chapter VIl

SAPI5 Compliance

API Support

SAPI5 Compliance

This section lists which Microsoft Text-To-Speech API v5.1
functions (Text-To-Speech engine Interface) are supported by
ScanSoft. For mote details on each of these functions, see the
chapters on Text-To-Speech Engine Interface in the Microsoft
Speech SDK v5.1 Reference. For more information, see the language

specific manuals.

Text-To-Speech engine Interface

Interface Function Name Availability
ISpTTSEngine Speak Supported
GetOutputFormat | Supported
ISpTTSEngineSite ISpEventSink Supported
GetActions Supported
Write Supported
GetRate Supported
GetVolume Supported
GetSkiplnfo Supported
CompleteSkip Supported
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide

Chapter V/141

Chapter VIl

SAPI5 Compliance

Text-To-Speech Intetface

With the exception of IsUISupported and DisplayUl, the Microsoft
SAPIS5 layer supports all functions of the ScanSoft Text-To-Speech engine

interface.
Interface Function Name Availability

IspVoice SetOutput Supported
GetOutputObjectToken Supported
GetOutputStream Supported
Pause Supported
Resume Supported
SetVoice Supported
GetVoice Supported
Speak Supported
SpeakStream Supported
GetStatus Supported
Skip Supported
SetPriority Supported
GetPriority Supported
SetAlertBoundary Supported
GetAlertBoundary Supported
SetRate Supported
GetRate Supported
SetVolume Supported
GetVolume Supported
WaitUntilDone Supported
SetSyncSpeakTimeout Supported
GetSyncSpeakTimeout Supported
SpeakCompleteEvent Supported
IsUISupported Not Supported
DisplayUl Not Supported

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide

Chapter V/142

SAPI5 Compliance

Chapter VIl

SAPI5 Interface

ISpVoice Interface

In this section you will find an alphabetical list of member functions
of the SAPI5 Text-To-Speech interface (IspVoice).

For a description of each member function, see the chapter on Text-
To-Speech Interfaces (ISpVoice), in the Microsoft Speech SDK v5.1
Reference.

This interface is the only interface for the application to access the
Text-To-Speech engine. The ISpVoice interface enables an
application to perform text synthesis operations. Applications can
speak text strings and text files, or play audio files through this
interface. All of these can be done synchronously or asynchronously.
Applications can choose a specific TTS voice using
ISpVoice::SetVoice. The state of the voice (for example, rate, pitch,
and volume), can be modified using SAPI XML tags that are
embedded into the spoken text. Some attributes, like rate and volume,
can be changed in real time using ISpVoice::SetRate and
ISpVoice::SetVolume. Voices can be set to different priorities using
ISpVoice:: SetPriority.

ISpVoice inherits from the ISpEventSource interface. An ISpVoice
object forwards events back to the application when the
corresponding audio data has been rendered to the output device.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter V/143

SAPI5 Compliance

Chapter VIl

ISpVoice::ISpEventSource
No engine specific remarks.
ISpVoice:SetOutput

The ScanSoft Text-To-Speech engine supports only 8 kHz in this
product. If the application chooses other frequencies, then the
Microsoft SAPI5 layer will use conversion software installed in the
PC, which might cause speech quality degradation.

ISpVoice:GetOutputObjectT'oken

See ISpVoice:SetOutput.
ISpVoice::GetOutputStream

No engine specific remarks.
ISpVoice::Pause

No engine specific remarks.
ISpVoice:Resume

No engine specific remarks.
ISpVoice::SetVoice

No engine specific remarks.
ISpVoice::GetVoice

No engine specific remarks.
ISpVoice::Speak

No engine specific remarks.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/144

Chapter VIl

ISpVoice:SpeakStream

No engine specific remarks.
ISpVoice::GetStatus

No engine specific remarks.
ISpVoice::Skip

No engine specific remarks.
ISpVoice::SetPriority

No engine specific remarks.
ISpVoice::GetPriority

No engine specific remarks.
ISpVoice::SetAlertBoundary

No engine specific remarks.
ISpVoice::GetAlertBoundary

No engine specific remarks.
ISpVoice::SetRate

No engine specific remarks.
ISpVoice::GetRate

No engine specific remarks.

SAPI5 Compliance

RealSpeak Telecom SDK V4.0 December 2005
Programmer's Guide

ScanSoft Proprietary
Chapter V/145

SAPI5 Compliance

Chapter VIl

ISpVoice::SetVolume

The default volume of ScanSoft voices is 90 instead of 100.
ISpVoice::GetVolume

The default volume of ScanSoft voices is 90 instead of 100.
ISpVoice::WaitUntilDone

No engine specific remarks.
ISpVoice::SetSyncSpeakTimeout

No engine specific remarks.
ISpVoice::GetSyncSpeakTimeout

No engine specific remarks.
ISpVoice::SpeakCompleteEvent

No engine specific remarks.
ISpVoice::1sUISupported

This member function is not supported by ScanSoft’s Text-To-
Speech engine.

ISpVoice::DisplayUl

This member function is not supported by ScanSoft’s Text-To-
Speech engine.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/146

Chapter VIl

SAPI5 XML Tags

SAPI5 Compliance

In this section you will find an alphabetical list of the Text-To-Speech
XML tags that are supported by Microsoft SAPI5. XML tags can be
embedded in the input text to change the Text-To-Speech output.
For each XML tag, you will find the following information:

Description
Syntax
Comments

Gives a description of the XML tag
Displays the syntax of the XML tag
Gives remarks that are specific to ScanSoft’s

support of the XML tag

Example

NOTE

Shows how to use the XML tag

12. Only correctly specified XML tags are converted to internally
embedded commands. Incorrectly specified control tags are

treated as white spaces.

13. The Text-To-Speech control tags that are not supported are

not described.

Please see the “Microsoft Speech SDK, V5.1” reference, chapter
“Text-To-Speech Interface”, for more details on the use and syntax
of XML tags, as well as on each XML tag separately.

Control tag Availability
<Bookmark> Supported
<Context> Supported
<Emph> Supported
<Lang> Supported
<Partofsp> Supported
<Pitch> Not supported
<Pron> Supported
<Rate> Supported
<Silence> Supported
<Spell> Supported
<Voice> Supported
<Volume> Supported

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide

Chapter V/147

SAPI5 Compliance

Chapter VIl

Bookmark

Description

This XML tag indicates a bookmark in the text.
Syntax

<bookmark mark=string/>

Comments

None.

Example

This sentence contains a

<bookmark mark=""bookmark one”/> bookmark.

For more detailed information, see the “Microsoft Speech SDK
V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS
Tutorial”.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter V/148

SAPI5 Compliance

Chapter VIl

Context

Description

This XML tag sets the context for the text that follows, determining
how specific strings should be spoken.

Syntax
<Context ID=string> Input Text </Context>
Comments

1. The following context types are supported:

\context ID="date_mdy”\
\context ID="date_dmy”\
\context ID="date_ymd”\
\context ID="date_ym”\
\context ID="date_my”"\
\context ID="date_dm”\
\context ID="date_md”\
\context ID="date_year’"\
\context ID="time_timeofday”\
\context ID="time_hms”\
\context ID="time_hm”\
\context ID="time_ms”\
\context ID="number_decimal”\
\context ID="cutrency”\

2. Some languages do not support this XML tag. See the release note for language specific
limitations.
Example
Today is <context ID="date_mdy”>12/22/99</Context>.
For more detailed information, see the “Microsoft Speech SDK

V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS
Tutorial”.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/149

SAPI5 Compliance

Chapter VIl

Emph

Description

This XML tag emphasizes the next sentence to be spoken.
Syntax

<Emph> Input text </Emph>

Comments

This tag is only supported by the ScanSoft engine to emphasize the
whole sentence.

Example
<emph>John and Peter are coming tomorrow</emph>.
For more detailed information, see the “Microsoft Speech SDK

V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS
Tutorial”.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter V/150

SAPI5 Compliance

Chapter VIl

Lang

Description

This XML tag indicates a language change in the text. This tag is
handled by the Microsoft SAPI5 Layer.

Syntax

<Lang langid=string> Input text </Lang>

Comments

None.

Example

<lang langid="409"> A U.S. English voice should speak this

sentence. </lang>

For more detailed information, see the “Microsoft Speech SDK
V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS
Tutorial”.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter V/I151

SAPI5 Compliance

Chapter VIl

Partofsp

Description

This XML tag indicates the part-of-speech of the next word. This tag
is effective only when the wotd is in the Lexicon and has the same
part-of-speech setting as in the Lexicon.

Syntax
<Partofsp Part=string> word </Partofsp>
Comments

The following part-of-speech types are supported:

—»

e <Partofsp Part="noun”>

e <Partofsp Part="verb”>

e <Partofsp Part="modifier”>

e <Partofsp Part="function”>

e <Partofsp Part="interjection”>
e <Partofsp Part="unknow”>

Example
<Partofsp Part="noun"> A </Partofsp> is the first letter of the
alphabet.

For more detailed information, see the “Microsoft Speech SDK
V5.17 reference, chapter “Text-To-Speech Interface” and “XML TTS
Tutorial”.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter V/152

SAPI5 Compliance

Chapter VIl

Pitch

Description

This XML tag is used to control the pitch of a voice.

Syntax

<Pitch Absmiddle=string> Input Text </Pitch>

Comments

ScanSoft’s RealSpeak Engine does not support this tag.
Example

<pitch absmiddle="5">This is a test.</pitch>

For more detailed information, see the “Microsoft Speech SDK

V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS
Tutorial”.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/153

SAPI5 Compliance

Chapter VIl

Pron

Description

The Pron tag inserts a specified pronunciation. The voice will process
the sequence of phonemes exactly as they are specified. This tag can
be empty, or it can have content. If it does have content, it will be
interpreted as providing the pronunciation for the enclosed text. That
is, the enclosed text will not be processed as it normally would be.

The Pron tag has one attribute, Sym, whose value is a string of white
space separated phonemes.

Syntax

<pron sym=phonetic string> or

<pron sym=phonetic string>Input text</pron>

Comments

The phoneme table can be found in the language specific manual:
“ScanSoft Telecom RealSpeak SAPI5 V3.51, User’s Guide for
<language>".

If no phoneme table is available for a specific language, then this tag
is not supported for that language.

Example

<pron sym="h eh 11ow & wer 11d"> hello wotld </pron>
For more detailed information, see the “Microsoft Speech SDK

V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS
Tutorial”.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter V/154

SAPI5 Compliance

Chapter VIl

Rate
Description
The Rate tag controls the rate of a voice. The tag can be empty, in
which case it applies to all subsequent text, or it can have content, in
which case it only applies to that content.
The Rate tag has two attributes, Speed and AbsSpeed, one of which
must be present. The value of both of these attributes should be an
integer between negative ten and ten. Values outside this range may
be truncated by the engine (but are not truncated by SAPI). The
AbsSpeed attribute controls the absolute rate of the voice, so a value
of ten always corresponds to a value of ten, a value of five always
corresponds to a value of five.
Syntax
<rate absspeed=number>Input text</rate>
or
<rate speed=number>Input text</rate>
Comments
None.
Example
<rate absspeed=""5">This is a sentence.</rate>
or
<rate speed="5">This is a faster sentence. </rate>
<rate speed="-5">This is a slower sentence. </rate>
For more detailed information, see the “Microsoft Speech SDK

V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS
Tutorial”.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/155

SAPI5 Compliance

Chapter VIl

Silence

Description

The Silence tag inserts a specified number of milliseconds of silence
into the output audio stream. This tag must be empty, and must have
one attribute, Msec.

Syntax

<silence msec=number>Input text

Comments

None.

Example

<silence msec="500">This is a sentence.

For more detailed information, see the “Microsoft Speech SDK

V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS
Tutorial”.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter V/156

SAPI5 Compliance

Chapter VIl

Spell

Description

The Spell tag forces the voice to spell out all text, rather than using its
default word and sentence breaking rules, normalization rules, and so
forth. All characters should be expanded to corresponding words
(including punctuation, numbers, and so forth). The Spell tag cannot
be empty.

Syntax

<spell>Input text</spell>

Comments

None.

Example

<spell>UN</spell>

For more detailed information, see the “Microsoft Speech SDK

V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS
Tutorial”.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter V/157

SAPI5 Compliance

Chapter VIl

Voice

Description

The Voice tag selects a voice based on its attributes, Age, Gender,
Language, Name, Vendor, and VendorPreferred. The tag can be
empty, in which case it changes the voice for all subsequent text, or it
can have content, in which case it only changes the voice for that
content.

The Voice tag has two attributes: Required and Optional. These
correspond exactly to the required and optional attributes parameters:
ISpObjectTokenCategory EnumerateTokens and SpFindBestToken.
The selected voice follows exactly the same rules as the latter of these
two functions. That is, all the required attributes are present, and
more optional attributes are present than with the other installed
voices (if several voices have equal numbers of optional attributes one
is selected at random).

For more details, see Object Tokens and Registry Settings in the
“Microsoft Speech API V5.1,

In addition, the attributes of the current voice are always added as
optional attributes when the Voice tag is used. This means that a
voice that is more similar to the current voice will be selected over
one that is less similar.

If no voice is found that matches all of the required attributes, no
voice change will occur.

Syntax

<voice requited=type of info.=info.>Input text</voice>

or

<voice optional=type of info.=info.>Input text</voice>
Comments

None.

Example

<voice required="Gender=Female;Age!=Child">

A female non-child should speak this sentence, if one exists.
</voice> <voice required="Age=Teen">

A teen should speak this sentence - if a female, non-child teen is
present, she will be selected over a male teen, for example. </voice>

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter V/158

SAPI5 Compliance

Chapter VIl

For more detailed information, see the “Microsoft Speech SDK
V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS
Tutorial”.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/159

SAPI5 Compliance

Chapter VIl

Volume

Description

The Volume tag controls the volume of a voice. The tag can be
empty, in which case it applies to all subsequent text, or it can have
content, in which case it only applies to that content.

The Volume tag has one required attribute: Level. The value of this
attribute should be an integer between zero and one hundred. Values
outside this range will be truncated.

Syntax

<volume level=number>Input text</volume>

Comments

The default volume of ScanSoft voices is 90 instead of 100.
Example

<volume level="50">This is a sentence .</volume>

For more detailed information, see the “Microsoft Speech SDK

V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS
Tutorial”.

Load ScanSoft User Dictionaries

The user can enable the RealSpeak Solo SAPIS5 layer to load the
ScanSoft proprietary user dictionary automatically in order to provide
better pronunciation for especially proper names, geographical names
and so on. This mechanism provides an alternative solution for the
SAPIS5 lexicon.

The user can specify the list of user dictionaries in the registry per
language. What to be registered is as below:

In
HKEY_LOCAL_MACHINE\SOFTWARE\ScanSoft\'TTS\SAPI5
\Install\ <Language code (e.g. ENU for American English)>, you
need to create strings (sequential number and full pathname of the
user dictionary) as below:

“1” “c:\dictl.dbc”

«“p” “d:\American English\dict2.bdc”

If there is same entry in multiple dictionaries, then late loaded
dictionary will have higher priority. So, the dictionary in “2” will have
higher priority than in “1”. The full pathname of the user dictionary

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter V/160

SAPI5 Compliance

Chapter VIl

should be shorter than 256 characters. The 3 letter language code is as
below table:

3-letter language codes

Language name language
code
American English ENU
Australian English ENA
Belgian Dutch DUB
Brazilian Portuguese PTB
British English ENG
Canadian French FRC
Cantonese CAH
Danish DAD
Dutch (Netherlands) DUN
French FRF
German GED
Ttalian ITT
Japanese JP]
Korean KOK
Mandarin Chinese MNC
Mexican Spanish SPM
Norwegian NON
Polish PLP
Portuguese (European) PTP
Russian RUR
Spanish (European) SPE
Swedish SWS

SAPI5 Client/Server

Required Software

The client/setver mechanism for SAPI5 interface provides the user
with an environment where multiple thin clients can communicate
with one or multiple remote server(s) to request speech output for a
given input text.

To configure the RealSpeak Telecom SDK in the client/setrver mode
for the SAPI5 interface, you need to install the RealSpeak Telecom
SDK package (language independent package) both on the client and
on the server side.

Besides the RealSpeak Telecom SDK, you also need to install the
Microsoft SAPI5.1 run-time package on the client side.

For the server you need to install at least one language to support
basic Text-to-Speech features.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter V/161

SAPI5 Compliance

Chapter VIl

Required Hardware

The required version of RealSpeak Telecom SDK is 4.0.4 or higher.

The application developers should decide how many PC’s are
required for their application. To run the RealSpeak Telecom SDK in
the client/server mode by using the SAPI5 interface, you need at least
two systems (one for the client and another for the server). Each
client PC can connect to up to 64 servers; the number of client
systems is not limited.

Installing SAPI5 Layer

To run the SAPI5 interface in the client/server mode, you need a
SAPIS5 layer module that is different from the one that is used in the
standard RealSpeak Telecom SDK. The SAPI5 layer module is called
“rs_sapi5_telecom_cs.dll”; it has to be copied to the directory
“<install path (e.g. “c:\program files\scansoft\RealSpeak
v4.0”)>\speech\components\common”.

Change in the Registry

To enable the SAPI5 in client/setver mode, you need to modify the
registry. In the registry, for the key
<\HKEY_CLASSES_ROOT\CLSID\ {E1E6344F-DDF6-41fb-
8F76-FC62CDFC3FF5} \InprocServer32>, you need to change the
default value from “rs_sapi5_telecom.dll” to
“rs_sapi5_telecom_cs.dll”.

If you want to set it back to in-process mode, you need to change
“rs_sapi5_telecom_cs.dll” to “rs_sapi5_telecom.dll”.

Modifications in the Configuration File

You must add the server information to the configuration file in the
client system. The configuration file (ttsserver.xml) can be found in
the directory “<install path (e.g. “c:\program
files\scansoft\RealSpeak v4.0”)>\config”.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter V/162

SAPI5 Compliance

Chapter VIl

Add Server Information

The list of servers can be added to “ttsserver.xml” as indicated below:

<tts_servers>
<tts_server name="10.151.11.31">
All
</tts_server>
<tts_server name="10.151.11.32">
American English,Australian English
</tts_server>
</tts_servers>

You can specify multiple servers up to a maximum of 64 servers; you
can also specify supported languages for each server. If the server
supports all languages, then you can specify “All”.

If the server supports some languages, then you can specify the list of
languages and “,” is used as a delimiter between languages. An
example is “German, French”.

Changes in the Registry

To allow the SAPI5 layer to read the server information, you need to
specify the location of SAPI5 configuration file in the registry.

In
<\HKEY_LOCAL_MACHINE\SOFTWARE\ScanSoft\RealSpeak
4.0>, you need to specify the SAPI5 configuration file as in the
example below:

SAPI5ConfigFiles=c:\Program Files\ScanSoft\RealSpeak
4.0\ config\ttsserver.xml

TL.oad User Dictionaries

To load the user dictionaries in the client/server mode, you need to
perform two tasks. The first task is to modify the configuration file in
the setver to specify a directory that has user dictionaries.

In the configuration file you can specify a directory like below
example:

<dictionary_default_path>c:\usrdict</dictionary_default_path>

In the client you can set a list of user dictionaries by listing them in
the registry. You can find the information in chapter 5 in this manual.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter V/163

SAPI5 Compliance

Chapter VIl

Microsoft Lexicon

Enable Logging

The SAPI5 layer in the client checks the registry to find a list of user
dictionaries that are to be loaded. It sends the list of user dictionaries
to the server that loads the dictionaries from the directory specified in
<dictionary_default_path>.

All user dictionaries that are to be loaded must exist in the directory
specified in <dictionary_default_path>.

Support is possible only for ScanSoft proprietary user dictionary; the
format of the user dictionary must be binary. The ScanSoft
proprietary user dictionary can be edited by UDE (User Dictionary
Editor).

The SAPI5 lexicons in the client are not supported in this version.

To enable the logging facility in the server, please read the
“Configuration Files” section of the “User Configuration” chapter.
This section provides the information on how to enable the server
logging , how to set the logging level and so on, by modifying the
server configuration file (by default, ttsserver.xml).

The client requires another action than the server. Do not modify the
configuration file; instead, set a number of values in the registry so
as to enable the logging mechanism or to set the logging level.

In
<\HKEY_LOCAL_MACHINE\SOFTWARE\ScanSoft\RealSpeak
4.0\Log>,

you can specify the value in the registry as mentioned below:

Enable=<TRUE or FALSE>

Log File=File name (e.g. c:\log.txt)

Log Level=(0 or 1)

Log Size=size (in byte) of log file (e.g. 100000000)

The higher the log level, the more information will be logged in the
logging file.

In
<\HKEY_LOCAL_MACHINE\SOFTWARE\ScanSoft\RealSpeak
4.0\Log>

the key “Log” is not automatically created by the RealSpeak Telecom
SDK installation package. So you need to create the key “Log”
manually.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter V/164

SAPI5 Compliance

Chapter VIl

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/165

RealSpeak Telecom
Sottware Development Kit

Chapter VI

SSML Support

RealSpeak
V4.0 Manual

SSML Suport

Chapter IX

SSML Support

Introduction and Purpose

SSML (Speech Synthesizer Markup Language) is part of a set of
markup specifications by the W3C for voice browsers. SSML was
designed to provide a rich, XML-based markup language for assisting
the generation of synthetic speech in web and other applications. The
essential role of the markup language is to provide a standard way to
control aspects of speech such as pronunciation, volume, pitch and
rate.

The Telecom RealSpeak/Host SDK provides a built-in preprocessor
that supportts a large portion of the SSML 1.0 September 2004
Recommendation (REC). Moreover RealSpeak extends SSML with a
number of Scansoft specific elements/attributes.

The set supported by Scansoft is called “ScanSoft SSML” (4SML).
Please refer to language specific documentation for language-specific
support for certain tags.

Links

Some links to related W3C specifications:
e http://www.w3.org/TR/2002 -speech-synthesis-20020405 “Speech
Synthesis Markup Language Specification —-W3C Working Draft 5 April 2002”

e http://www.w3.org/TR/2002/WD-speech-synthesis-20021202 “Speech Synthesis
Markup Language Spedification 1.0 — W3C Working Draft 02 December 2002”

e http://wwww3.org/TR/2004/REC-speech-svnthesis-20040907 “Speech
Synthesis Markup Language Specification Version 1.0 — W3C Recommendation 7

September 20047

SSML Compliance

Support for the SSML 1.0 REC September 2004

As mentioned before, we aim to be compliant with the W3C
specification. At the time of writing, this was the September 2004
Recommendation. We support all elements/attributes specified in the
specification, regardless of their rating (“MUST", "REQUIRED",
"SHALL", "SHOULD", “RECOMMENDED", "MAY”’
“OPTIONAL”) except where this proves hard to implement due to
the nature of the RealSpeak engine. If so, this markup element will be

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/167

SSML Suport

Chapter IX

detected, parsed, but ignored. This applies to the following elements
and or properties:

1. The “IPA” alphabet is not supported for <phoneme> elements
(SSML “should” level conformance requirement). Phoneme
strings must be transcribed using the Scansoft proprietary
phonemic alphabet, being “UNIPA” (which we believe to be a
morte ‘developer-friendly” solution). Error! Unknown
document property name. will fall-back to the element’s
content when the specified alphabet is not “unipa”. Note that the
requirement that vendor-defined alphabets must be of the form “x-
organization" or "x-organization-alphabet” is not yet adhered
to.

2. <emphasis>: “none” level is not supported. Using this element
does not necessarily lead to audible differences as the system may
elect ignoring these targets for realizing optimal natural speech
output.

3. <mark> only supports marks with names that are unsigned 32-bit
integers. Marks that do not meet this requirement are ignored.

4. <voice>

a. The “age”, “gender”, “name” and “variant” attribute are
only supported when specified together with “xml:lang”.

b. The “age” attribute is supported. But to make this
attribute useful, a set of voices with varying age over the
same language and gender needs to be installed. At the
time of writing this would require the use of custom voices.

5. <prosody>

a. Duration, pitch, pitch-range, and contour values are
ignored.

b. The volume is not persistent over voice switches. (Rate is
neither but that’s conformant with the spec.)

6. <break strength="none”> will only have will only have an audible
effect when without the <break> element, the TTS engine would
have inserted a sentence break.

7. <meta>: http-equiv is not supported

8. <sayas>
Standardized values for the <sayas> attributes will be published in
a W3C Group Note. For an extensive list of RealSpeak 4SML
supported say-as attributes and attribute values, see the “Say-as
Support” section further in this document. Please note that
Scansoft is involved in this Working Group and is committed to
support any guidelines that may follow from this.

>

Legacy support for the SSML 1.0 WD December 2002

RealSpeak supports the elements/attributes of the December 2002
SSML 1.0 WD with the following exceptions:

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/168

SSML Suport

Chapter IX

1. The same limitations as listed under the September 2004
REC compliance section apply except for the <break>
element (see below)

2. <break>

a) Symbolic values for the “time” attribute are
ignored. They are supported when specified via
the April 2002 WD “size” attribute.

b) The value “none” for the “time” attribute is
processed in the same way as the value “none”
for the “strength” attribute (available under the
1.0 REC). It has the effect that a normally
inserted sentence break will be removed. .
Whereas according to the December 2002 spec
the “time” value "none" indicates that a normal
break boundary should be used.

3. <prosody rate> is always interpreted as per the final SSML
1.0 REC. April 2002 and December 2002 spec’s interpret a
bare number as a word-per-minute value, while in the final
SSML recommendation a bare number is a multiplier of
the default rate. It proved not feasible to auto-detect which
specification the user is working against (the <speak>
element will specify the version as “1.0” for all these
versions).

Legacy Support for the SSML 1.0 WD April 2002

RealSpeak supports the elements/attributes of the April 2002 SSML
1.0 WD with the following exceptions:

1. The same limitations as listed under the September 2004
REC compliance section apply except for the <break>
element (see below)

2. <break>

a) We continue to support the time attribute with
symbolic values. However, avoid using it in new
designs as it is considered ‘deprecated’.

b) The value “none” for the “size” attribute is
processed in the same way as the value “none” for
the “strength” attribute (available under the 1.0
REC). It has the effect that a normally inserted
sentence break will be removed. . Whereas
according to the April 2002 spec the “size” value
"none" indicates that a normal break boundaty

should be used.

3. Rate is always interpreted as per the final SSML 1.0 REC.
See the previous section on the Dec 2002 WD for more
details.

4. Support for the <say-as> element is language specific.
Note that RealSpeak supports both the <sayas> syntax of

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/169

SSML Suport

Chapter IX

the April 2002 SSML which specifies the “type” attribute
and the Dec 2002 and more recent versions which specify
the “interpret-as”, “format” and “detail” attributes.

Volume Scale Conversion

The realization of volume numerical values is SSML conformant. The
default value is “100”. and the scale is amplitude linear. Note that
although the SSML specifies that the range is 0 to 100, we internally
support a more extended range (0 to 200). The values above 100 can
only be reached via relative changes or the symbolic values “loud”
and “x-loud”.

Note that previous RealSpeak versions (v4.0.3 and older)
implemented an amplitude logarithmic volume (or dB) scale with
“80” as the default value. This default volume maps to the current
default value “100”. The old volume scale corresponds with the
native volume markup scale listed in the rightmost column of the
table below.

The table below describes the mapping between the SSML volume
scale and the Scansoft native volume scale (where the volume value
is an integer in the range 0 to 100 which can be set via the native
<esc>\vol=x\ markup).

SSML Amplitude Loudness in SSFT
value amplification dB volume

factor value

0 0.00 -ood B 0

10 0.10 -20.0 dB 13

20 0.20 -14.0 dB 33

30 0.30 -10.5dB 45

40 0.40 -8.0 dB 53

50 0.50 -6.0 dB 60

60 0.60 -4.4 dB 65

70 0.70 -3.1dB 70

80 0.80 -1.9 dB 74

90 0.90 -0.9 dB 77

100 1.00 0.0 dB 80

(141) 1.41 +3.0 dB 90

(200) 2.00 +6.0 dB 100

The formula for converting the SSML value Vym to the amplification
factor A is very simple:

A = Vgm / 100

The formula for converting a non-zero amplification factor A to the

corresponding ssft volume value X
Xt = Round((20 * log10(A) / 0.30) + 80)

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VI/170

SSML Suport

Chapter IX

The formula for converting a non-zero ssft value X to the dB
value Y:

Y (dB) = (Xt - 80) * 0.3 dB

The SSML symbolic values are mapped as follows:

SSML Symbolic Amplitude Loudness in
value value amplification dB
factor
0 silent 0.00 _o0 dB
18 x-soft 0.18 -15dB
50 soft 0.50 -6 dB
100 medium 1.00 0dB
(141) loud 1.41 +3dB
(200) x-loud 2.00 +6 dB

Rate Scale Conversion

We fully support SSML rate markup. The following tables/rules can
be used to map SSML markup to equivalent SSFT native markup.
The default value is “1.00”.

SSML Symbolic SSML SSFT native
“number” value percentage rate value
value Ww.r.t. voice
default
0.50 x-slow -50% 1
0.70 slow -30% 20
1.00 medium +0% 50
1.60 fast +60% 70
2.50 x-fast +150% 100

SSML descriptive and “number” values change the rate against the
voice default. All other rate changes are relative against the (XML)
parent element.

The formula to convert an SSML <prosody rate=" Xsm > value into
an SSFT <esc>/rate=Ys/ value. Do note that rate changes are
relative against parent. L.e. you must cumulate your SSML value over
all ancestors before converting.

For increasing the rate (Xesmi > 1.0)

Yot = Round(50 + (Xssmi - 1) / 0.03)

When decreasing the rate (Xem < 1.0)

Yar = Round(50 - (1 - X)) * 100)

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VI/171

SSML Suport

Chapter IX

Break Implementation

A <break strength=""xxx""> element is implemented as a pause of a
certain duration, so it directly maps to an SSFT <esc>\pause=x\ tag.
The only exception is the SSML <break strength=""none”> element
which maps to an SSFT' <esc>C tag,.

The table below specifies the mapping and the corresponding native

markup.
Symbolic Duration in ~ Native markup
value ms of the value
pause
x-weak 100 <esc>\pause=100\
weak 200 <esc>\pause=200\
medium 400 <esc>\pause=400\
strong 700 <esc>\pause=700\
x-strong 1200 <esc>\pause=1200\

When using both the ‘time’ and the ‘strength’ attributes, the ‘time’
attribute gets presidency.

Say-as Support

While the W3C SSML 1.0 Recommendation specifies the say-as element
and its semantics with the “interpret-as”, “format”, and “detail”
attributes, it does not define any specific say-as types. Standardized
values for the <sayas> attributes will be published in a W3C Group
Note. Please note that Scansoft is involved in this Working Group and
is committed to support any guidelines that may follow from this.
RealSpeak supports both the <sayas> syntax of the April 2002 SSML
which specifies the “type” attribute and the Dec 2002 and more recent
versions. The RealSpeak supported say-as types following the more
recent SSML specifications are listed below. They generally correspond
with the types defined by Speechify v3. The table below provides some
guidance to their usage. The say-as types for the older versions are
listed in the “RealSpeak v4.0 User’s Guide” for each language but use of
them is discouraged.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/172

Chapter IX

SSML Suport

address Used for postal addresses.

currency

duration

letters

(peso and dollar Contained text is a currency amount (the

for NA Spanish) currency symbol may be present in the enclosed
text). Supports currencies as commonly
specified in the country cotresponding to the
For example, §, £ and ¥.for US English

Same as “number” with format “decimal”.
Use of the separator for the integral part is
optional. E.g. 123456.123 and 123,456.123
are pronounced in the same way for US
English.

h,hm hms,m,ms, For example: “duration” with format “hms” is
s read out as “<h>hour(s), <m> minute(s), and
<s>seconds” (assuming xmllang was specified
as “en-US”)

Pronounce alphanumerical strings as a
sequence of individual letters and/or
digits. With detail “strict” punctuation is
also spoken (e.g. speaking a comma as

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VI/173

SSML Suport

Chapter IX

Say-as Say-as Notes and cautions
“interpret-as” “format”
attribute attribute

“comma”).

Letters with detail ““strict” is equivalent to
“acronym” with detail ““strict”. For true spelling
of all readable characters, use the “interpret-as”
value “spell”.

measute A vatiety of units (e.g., km, ht, dB, Ib, MHz) is
supported; the units may appear immediately
next to a number (e.g., 1cm) ot be separated by a
space (e.g., 15 ms); for some units the
singular/plural distinction may not always be

made correctly.
name Interpret a string as a proper name if
possible.
net email, uri “email” can be used for email addresses.
number cardinal, decimal, ~Only formats relevant in the target language are
digits,fraction, supported. All the format values are supported
ordinal, as interptet-as values as well, behaving the same
telephone for either syntax.. See the table entties for those
aliases for more details.
otrdinal If relevant, see the language-specific User Guide

for a list of the supported formats. Same as
“number” with format “ordinal”.

spell The characters in the contained text string
are pronounced as individual characters.

telephone Supportts telephone numbets as commonly
specified in the country cotresponding to the

target language. See the language-specific User
Guide for a list of the supported formats.

Use detail="punctuation" to speak punctuation
(e.g. speaking a dash as “dash”).

time h,hm_ hms "The hour should be less than 24, minutes and
seconds less than 60; AM/PM is read out only if
explicitly specified. See the language-specific
User Guide for a list of the supported formats.

words This biases the rendering of “word” strings
towards speaking them as words instead of
pronouncing them as strings of individual letters
and digits. However, the characters of a “word”
may still be uttered individually for particulatly
difficult to pronounce character sequences.
Meant for acronyms to be read as words.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/174

SSML Suport

Chapter IX

The “say-as” support varies by language. But ScanSoft expects to
continue expanding say-as type coverage for languages over time,
both by expanding existing say-as types to other RealSpeak languages,
and by adding new say-as types. For unsupported say-as types,
RealSpeak merely uses its default text normalization rules. This means
that even though Japanese doesn’t support say-as type “telephone”,
for example, the output almost always sounds correct anyway since
RealSpeak is very good at identifying and propetly speaking phone
numbers in plain text.

The table below lists the supported say-as types for the RealSpeak
languages. For the “Say-as Type” column, we use a compressed
notation where colons are used to delimit the “interpret-as”,
“format”, and “detail” values. Right-most empty values and the colon
delimiter are omitted. For example:

acronym = <say-as interpret-as="“acronym”>
—cc

currency:dollar = <say-as interpret-as=“currency” format="“dollar”>
acronymu:strict = <say-as interpret-as= “acronym’ detail="strict”>

acronymusttict es
cardinal es es

digits yes yes

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/175

SSML Suport

Chapter IX

duration:h es
duration:hms es
duration:ms es

letters

€S

time es es
time:hm es es

words

yes

The Lexicon Element

We support loading of SSFT user dictionaries through the SSML
lexicon element. The value for the ‘uri’ attribute must be a valid URI
to an SSFT user dictionary. The dictionary can be in either one of the
two supported SSFT formats. Be it textual (typically *.dct or *.tdc) or
binary (typically *.dcb *.bdc).

The ‘type’ attribute is optional. Valid values are:
e “application/edct-bin-dictionary"
e “application/edct-text-dictionary"

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VI/176

Chapter IX

SSML Suport

When using an HTTP server, remember to add two entries to your
MIME table, thus associating the dictionary extension with the
correct MIME type. (Other approaches may be possible, depending
on the HTTP-server software you’re using) For local file access, the
following file extensions are correctly mapped, out of the box: ".dct",
".tdc", ".bdc", and ".dcb".

All lexicon elements are parsed, and user dictionaries loaded before
starting Text to Speech conversion. Dictionaries are unloaded when
the last sample buffer is generated, or when the TTS process is
interrupted by some real time event (STOP).

As always, check the SSML documentation for additional detail.

Scansoft SSMI. Extensions

RealSpeak SSML extensions have an “ssft-” prefix before the name of the
clement/attribute. The supported extensions are:

“ssft-dtype” attribute of <speak>, <p> (paragraph) and <s>
(sentence) with values “email” or “text” (or “email ”<xxx>
and “text_”<xxx> for the Chinese languages, see language
specific user’s guide). With this attribute, the user can toggle
the TTS output behavior between normal text mode and e-
mail specific mode. It has the same effect as the native
markup “<esc>%x" (with x is “text” or “email”).

“ssft-domaintype” attribute of <speak>, <p> (paragraph)
and <s> (sentence) (value e.g. “propernames"). With this
attribute ScanSoft vendor-specific domain types (custom
G2P modules) can be enabled. It has the same effect as the
native markup “<esc>\domain=x\.... <esc>\domain\”. To
use this tag, a specific custom G2P needs to be installed. See
“Custom G2P Dictionaries” chapter of this manual for
further explanation.

The <audio> element supports three extra attributes to
control the internet fetching:

(0]

fetchtimeout: time in to attempt to open and read
the audio document. Use the "s" suffix for seconds,
"ms" suffix for msec; if there is no suffix, "ms" is
assumed. The value must be an unsigned integer.
maxage: value for the HTTP 1.1 cache-control max-
age directive. This specifies the application is willing
to accept a cached copy of the audio document no
older than this value. A value of 0 may be used to
force re-validating the cached copy with the origin
server. In most cases, this attribute should not be
present, thus allowing the origin server to control
expiration. Use the "s" suffix for seconds, "ms"
suffix for msec; if there is no suffix, "s" is assumed.
The value must be an unsigned integer.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VI/177

Chapter IX

API functions

SSML Suport

maxstale: value for the HTTP 1.1 cache-Control
max-stale directive. This specifies the client is willing
to accept a cached copy that is expired by up to this
value past the expiration time specified by the origin
server. In most cases, this property should be set to
0 or not present, thus respecting the expiration time
specified by the origin server. Use the "s" suffix for
seconds, "ms" suffix for msec; if there is no suffix,
n.n

s" is assumed. The value must be an unsigned
integer.

To enable SSML support, set the markup type via TtsSetParam or
TtsSetParams API function:

TtsSetParam(hTtsInst, TTS_MARKUP_TYPE_PARAM ,
MARKUP_4SML);

By default, the markup type is set to “none” which corresponds with
support for the native markup format.

TtsSetParam(hTtsInst, TTS_MARKUP_TYPE_PARAM ,
MARKUP_NONE);

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VI/178

RealSpeak Telecom
Sottware Development Kit

Chapter VII

Language Identifier 1.0

Programmer’s Guide

Language Identifier 1.0

Chapter VI

Language Identitier 1.0

Language Identifier 1.0: Preface

Overview

System Requirements

The Language Identifier (Language 1D) software lets you identify the
source language of text strings encoded in the Windows-1252 code
page. To synthesize text that may contain instances of multiple
languages with a Text-To-Speech (T'TS) system, you must first
segment the text into the appropriate language and then route it to
the appropriate synthesizer. Similarly, you may want a TTS system to
handle dynamically generated content. Generally, you do not know
the language of dynamically generated content when you compile an
application. In this case, you need to identify the language of the text
and pass this information to your application which then picks the
TTS synthesizer to use.

Accuracy for the Language ID software is nearly 100% for identifying
a single language with even a small sample of 50-100 characters. Even
heavily intermingled text drawn from dozens of languages can be
segmented and identified extremely accurately.

This section covers the requirements for a Language ID software
system.

Size requirements

The sire requirements for the Language 1D software are as follows:
e Memory: 32 MB RAM minimum, 64 MB recommended

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VII/180

Language Identifier 1.0

Chapter VI

OS requirements

The Language 1D software runs on the following operating systems:
e Windows 2000/x86
e Windows NT/x86
e Red Hat Linux AS2.1

Software requirements

The only additional software you need is a C compiler to access the
API functions.

NOTES

ScanSoft tests the Language ID software with Microsoft Visual C++
6.0 on Windows and GCC 3.2.3 on Linux.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/181

Language Identifier 1.0

Chapter VI

Installing the Language ID software

Installing
The language ID software is an integral part of the RealSpeak
Telecom setup. Libraries and include files are installed in the default
library and include directories.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter VI1/182

Language Identifier 1.0

Chapter VI

Using the Language ID software

Overview

The Language ID software is able to classify text as being one (or
none) of a number of languages.

The application may constrain the identifier to choose from a subset
of the installed languages. Call this subset of the installed languages,
the active languages.

Language set

The set of languages used in the language identifier must be set at run
time from a set of 11 supported languages (enumerated below). The
languages selected comprise the set of active languages.

The identifier considers only active languages.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/183

Language Identifier 1.0

Chapter VI

Available Languages and Codings

For the version 1.0 release, the following set of languages in the
Windows-1252 code page is available:

Language Language
code
Basque BAE
Danish DAD
Dutch DUX
English ENX
French FRX
German GED
Italian ITI
Norvegian NON
Portuguese PTX
Spanish SPX
Swedish SWS
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter VII/184

Language Identifier 1.0

Chapter VI

Language Classification

In its simplest application, language identification takes a sequence of
bytes as input and identifies the single language the sequence is most
likely to be drawn from.

Tuning Classification

You can tune the Language ID classifications based on preferred
languages. The classifier may be configured through the API to prefer
active languages. For instance, a French-Canadian installation may
prefer English and French to the other available languages. When two
languages are given similar scores by the identifier’s algorithm,

and one is preferred and the other is not, the preferred one is
returned. For more information, see “Language Configuration”.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/185

Language Identifier 1.0

Chapter VI

Language ID API Functions

The Language 1D software has its own set of API functions. All
functions have a name starting with “lid” and can be found in the
header file lid.h. Use these functions to control and access the
Language ID software.

In this section:

e Data Structures reference
e Function reference

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/186

Language Identifier 1.0

Chapter VI

Data structure reference

The header file lid.h contains two main data structures that are part of
the API for the user.

LID_H

This structure describes a handle to a language identifier object.

LID_SCORE_T

This structure describes one active language for the language
identification process. Only the active languages will be taken in
account for the language identification.

Structure

struct LID_SCORE_S {

char szLID[4]
SSFT_U32 value;
¥
Members
szLLID Language code. This is a 3-letter
string that identifies a language.
Examples are: “ENX” (English),
“GED” (German).
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter VII/187

Language Identifier 1.0

Chapter VI

Value Score value returned by the
lid_Identfity() function call (
initially this value has no meaning):
the lower this value, the likelier
that szLID is the language of the
input text. In particular, the
probability is proportional with
exp(-value/2000)

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI1/188

Language Identifier 1.0

Chapter VI

lid_ObjOpen()
Syntax:
SSFT_ERROR lid_ObjOpen(
LID_H * phLid;
1B
Purpose:

Creates and allocates a new language identifier.

Parameters:
*phLid; Handle to the new language
identifier
Return codes:
SSFT_OK ok
other code Error. An overview of all error

codes can be found in the
header file ssfterror.h.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/189

Language Identifier 1.0

Chapter VI

lid_ObjClose()
Syntax:

SSFT_ERROR lid_ObjClose(
const LID_H hl.id;

IE
Purpose:
Removes a language identifier and deallocates all its sources.
Parameters:

hLid; Handle to language identifier
Return codes:

SSFT_OK ok

other code Error. An overview of all error

codes can be found in the
header file ssfterror.h.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/190

Chapter VI

lid_Identify()

Syntax:

void lid_Identify(

Language Identifier 1.0

LID_H hLid,

const char *szText,
LID_SCORE_T **ppScore,
const SSFT _U16 cScore

35

Purpose:

This function identifies the language of the input text (szText) from
the set of active languages in the list of language-score pairs

(ppScore[0..cScore-1]).
Parameters:
hlLid;

szText
ppScore

const SSFT_U16

Handle to language identifier
The actual input text

On input, this list of pointers to
language-score pairs defines the
languages that need be
considered. On return the list is
sorted on score from low to high
so that the most probable
language comes first.

see LID_SCORE_T struct for
more info [out]

Number of elements in ppScore.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter VII/191

RealSpeak Telecom
Sottware Development Kit

Chapter VIII

User Configuration

Programmer’s Guide

User Dictionaries

Chapter VI

User Contiguration

Overview

This chapter describes the different ways in which a user can tune
RealSpeak. It descrribes:

e User Dictionaries

e User Rulesets

e Custom G2P dictionaries
e (Custom Voices

e Configuration Files

User Dictionaries

Functional Description

User dictionaries allow the user to specify special pronunciations for
specific words or strings of characters (for example, abbreviations).
Dictionaries work by substituting a string specified by the user (the
“destination string” or “replacement string”) for each occurrence of a
word in the original input text that matches the “source string” of a
dictionary entry. Source strings cannot contain white space
characters, so multi-word entries are not supported.
When a dictionary instance is loaded, the TTS looks up each word in
the input text to check if it must be replaced with a destination string
from the dictionary.
The case-sensitiveness of the lookup depends on the use of capital
letters in the dictionary entry.
a) If the source string does not contain capital letters,
the substitution is case-insensitive.
For example when the dictionary contains an entry
for the source string "dll", text input keys such as
"DLL", "dll", "DII" and "dLL" will all be
substituted.
b) If the source string contains at least one capital
letter, the substitution is case-sensitive.
For example when the dictionary contains an entry
for "DLL", only the text input key "DLL" will
match for that entry.
This is a consequence of the way user dictionaries are used by the
TTS engine. The user dictionary is first consulted for the original
input text key; which means a case-sensitive lookup is performed.
If no match is found, the user dictionary is consulted for the lower
case version of the input text key.
It is allowed to have two dictionary entries with source strings that
only differ in casing. The entry for which the source string contains
capital letters takes precedence when the input text key is an exact
match.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/193

User Dictionaries

Chapter VI

Suppose the dictionary contains entries for "DLL" and "dll". Then,
only the input text key "DLL" will match for entry "DLL". And keys
like "dlI", "DII", "dLL" will all match for entry "dll".

The “destination string” of a dictionary entry can be orthographic or
phonetic text. Phonetic strings must be presented using the L&H+
phonetic alphabet.

See the language supplement appendix for your specific language for
special user dictionary information.

Dictionary substitution rules

e When the same source string occurs more than once in the
same subheader, the last occurrence will be chosen to pick
the destination string.

e When the same source string occurs in different subheaders
with different content type (one phonetic and one
orthographic), the occurrence in the first subheader will be
chosen to pick the corresponding destination string.

e Only complete words can be matched with; if there’s a
source string in the dictionary that is a substring of a word in
the input text, there will be no substitution.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/194

User Dictionaries

Chapter VI

Dictionary Format for RS Host version 4.0

Textual dictionaries must only be encoded in UTF-8 (default) or
UTF-16 (auto-detected by the Scansoft User Dictionary Editor tool)
and the RealSpeak API. Note that UTT-8 encoded dictionaries may
not contain the 3-byte UTF-8 preamble, also known as the UTF-8
BOM or signature.

In general, the dictionary format of textual dictionaries consists of
one [Header| label with its properties and several [SubHeadet]-[Data]
label couples with their properties and data.

Each [SubHeader| describes the expected data properties (such as
orthographic or phonetic text) while [Data] describes the actual
source string that needs to be replaced by a destination string.

In its most simple form, a dictionary exists of one [Header] label and
a [Data] label. Although syntactically correct, there ate no actions
specified in this dictionary.

The format has been changed compared to version 3.5. The new
format can formally be desctibed as:

dictionary format :=

[Headet]
{Language = <language code>}

{([SubHeadet]

Content=<content type>
Representation=<representation type>
{Language = <language code>}

[Data]

(<source string><separator><destination string><new
line>)*

¥}

| {[Data]}

language code := ENA|ENG|ENU|DUN |FRC|GED|...

source string := <word>

destination string := (<word>)*

content type := EDCT_CONTENT_ORTHOGRAPHIC |
EDCT_CONTENT_BROAD_NARROWS

representation type := EDCT_REPR_WSZ_STRING |
EDCT_REPR_SZZ_STRING

separator := tab space

new line := return character (enter)

word := any word

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/195

User Dictionaries

Chapter VI

Symbols legend:
symbol meaning
{...} optional patt; the part between { and } can be

occur once but is not required to.

example:
Language = <language code>
does not need to be specified

(...0)* the part between (and) can be occur more
then once

example:
it is possible to have one subheader, multiple
subheaders of no subheaders at all.

<...> the part between < and > specifies a variable
string constant

example:

<language code>

can be any of the available language codes
(ENU, ENA, FRC...).

a|b OR part a is specified OR part b is specified.

example:

as soon as something is specified under [Data],
there has to be a [SubHeader| with its
properties.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/196

User Dictionaries

Chapter VI

A source string consists of only one word while a destination string
can consists of multiple words. Both have to be separated by a tab
space. When the destination string consists of phonetic symbols, the
string must be preceded by //.

The language string consists of the 3 letter code that identifies a
language. Examples of letter codes are ENA, ENG, ENU, FRC,
FRF, GED, JPJ, MNC, SPM. A table listing the available language
codes can be found in the “RealSpeak Languages” appendix. The
language string must be specified; this has to be done or as part of the
subheaders or as part of the header (or both). Since TTS doesn’t
provide support for multiple languages in user dictionaries, the
language string has to be the same in header and subheaders.

The content type defines the type of destination string that should be
expected; use EDCT_CONTENT_ORTHOGRAPHIC to expect
orthographic strings, use EDCT_CONTENT_BROAD_NARROWS
to expect phonetic strings.

The content type determines the representation type; when the
content type is EDCT_CONTENT_ORTHOGRAPHIC, use
EDCT_REPR_WSZ_STRING as representation type. When the
content type is EDCT_CONTENT_BROAD_NARROWS, use
EDCT_REPR_SZZ_STRING as representation type.

When a dictionary is not built according to these formal rules, the
error message TTS_E_UDCT_WRONGTXTDCTFORMAT will be
returned when loading the dictionary. When a dictionary is built
according to these formal rules it is still possible that the expected
result is different or that the error message is returned. It means that
the dictionary file has an invalid format.

Possible errors:

e Textual dictionaries must only be encoded in UTF-8 (default)
or UTF-16 (auto-detected). Note that all characters in the 7-
bit US-ASCII range (hex 20 to7f) are encoded identically
whether UTF-8, US-ASCII or for instance Windows-1252
and ISO-8859-1 are used. So dictionaries which only use
character codes in the ASCII range can be encoded in for
instance Window-1252. If a non US-ASCII character is
present (e.g. 4) and the used encoding is for instance
Windows-1252, then when the dictionary is loaded via the
API an error will be returned and the dictionary will be
ignored. Likewise, when the dictionary file is opened in the
Scansoft User Dictionary Editor tool (see below), a fatal error
will be displayed.

e When as content EDCT_CONTENT_ORTHOGRAPHIC
is specified, the destination strings expected for this
subheader must consist only of orthographic characters.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/197

Chapter VI

User Dictionaries

When a phonetic string is used, it is interpreted as an
orthographic string and no error is returned.

When EDCT_CONTENT_BROAD_NARROWS is
specified as content, the destination strings expected for this
subheader must consist only of phonetic characters; an error
is returned when a string is found that isn’t preceded by //.
When unknown symbols are used in phonetic content, these
are ignored.

Only one language can be specified; no error is returned but
the dictionary is ignored.

The specified language has to be installed; no error is
returned but the dictionary is ignored.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/198

User Dictionaries

Chapter VI

An example dictionary typically looks like this:

[Headet]
Language = ENU

[SubHeadet]
Content=EDCT_CONTENT_ORTHOGRAPHIC
Representation=EDCT_REPR_WSZ_STRING

[Data]

DLL Dynamic Link Library

Hello Welcome to the demonstration of the American English Text-to-
Speech system.

info Information

[SubHeadet]
Content = EDCT_CONTENT_BROAD_NARROWS
Representation = EDCT_REPR_SZZ_STRING

[Data]
addr //!@.dR+Es

Dictionary format for older RealSpeak versions (3.x)

If L&H+ phonetic transcriptions are used, they should be preceded
by a single forward slash and a plus sign (/+).

Dictionaries can be in text format or binary format. They have the
following text format:

e The label [Header| indicates the header section. The content
of the header section is optional but the label is not. 1f the
section is left blank, the line after the [Header] label must
contain the [Data] label. The header section is made up of a
number of fields, whose format is described later in this
section. The TTS will store a number of predefined header
tields (see the following example). The user can define their
own fields, which will be ignored by the TTS. These fields
must conform to the format described below or the
dictionary will not load.

e The label [Data] indicates the beginning of the data section,
which contains the user dictionary entries. The size of the
dictionary entries is limited to 40 characters (including null
termination) for the source text and to 1024 characters
(including null termination) for the destination text.

Header fields have the format:
Field_name = field_text[newline]

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/199

User Dictionaries

Chapter VI

The Field_name and field_text must be separated by an equal sign. It
does not matter if there are spaces before and after the equal sign.

Dictionary entries have the format:
Target_word|space(s)|replacement_string[newline]

There must be at least one space between the Target_word and the
replacement_string. There can be multiple spaces between them.

The following is the equal sample user dictionary as for version 4.0:

[Headet]

Dictionary Name=us_english_sample.dct
Language=American English

Data Type=ANSI

Date=01/16/2003

[Data]

DLL Dynamic Link Library

Hello Welcome to the demonstration of the American English Text-
to-Speech system.

info Information

addr /+'@.dR+Es

Migration from 3.x to 4.0 format

The following rules have to be kept in mind when converting an old
3.x dictionary to the 4.0 dictionary format:

e Remove [Header| properties Data, Date and Dictionaty
Name.

e Change the language name to the language code (by example,
‘American English’ to ENU).

e Split the [Data] section in two sections (one for phonetic and
one for orthographic destination string).

e Provide a subheader for each category, with the subheader
properties (content and representation).

e Replace the /+ sequence by // for all phonetic destination
strings.

There are three possible scenarios for conversion:
1. The dictionary only contains orthographic entries
2. The dictionary only contains phonetic entries

3. The dictionaty contains both

To demonstrate these scenarios using the rules described above, three
examples are shown for each conversion:

Case 1: Orthography only

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VI11/200

User Dictionaries

Chapter VI

Case 2:

Case 3:

The new dictionary should look like this:

[Headet]
Language = ENU

[SubHeadet]
Content=EDCT_CONTENT_ORTHOGRAPHIC
Representation=EDCT_REPR_WSZ_STRING

[Data]
DLL Dynamic Link Library

Hello Welcome to the demonstration of the American English Text-
to-Speech system.
info Information

phonetics only

[Header]
Language = ENU

[SubHeadet]
Content = EDCT_CONTENT_BROAD_NARROWS
Representation = EDCT_REPR_SZZ_STRING

[Data]
addr //'@.dR+Es

both orthography and phonetic

[Headet]
Language = ENU

[SubHeadet]
Content=EDCT_CONTENT_ORTHOGRAPHIC
Representation=EDCT_REPR_WSZ_STRING

[Data]

DLL Dynamic Link Library

Hello Welcome to the demonstration of the American English Text-
to-Speech system.

info Information

[SubHeadet]
Content = EDCT_CONTENT_BROAD_NARROWS
Representation = EDCT_REPR_SZZ_STRING

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/201

User Dictionaries

Chapter VI

[Data]
addr //'@.dR+Es

User Dictionary API calls

From a developer’s point of view, a distinction has to be made
between the term ‘dictionary’ and ‘dictionary instance’. A ‘dictionary’
is the actual file and its content, while a ‘dictionary instance’ is the
loaded version of a dictionary into memory. A ‘handle to a dictionary
instance’ points to a loaded version. A dictionary instance is always
linked to one particular TTS engine instance, but one TTS engine
instance can be linked to multiple dictionary instances. In the
remaining text, the content should make clear whether ‘dictionaries’
or ‘dictionary instances’ are being discussed.

For version 4.0, a lot of new dictionary functionality has been created.
It is now possible to use more than one dictionary instance
simultaneously. Moreover, a priority mechanism is foreseen to
determine the order in which dictionaries will be called to perform a
lookup.

First, a dictionary instance has to be loaded by calling
TtsLoadUsrDictEx. This implicitly also enables a dictionary instance
for use, with default priority. All loaded dictionaries thus have the
same initial priority. In this case, the order of loading determines the

priority

To change priority, a call to TtsEnableUstDictEx has to be made.
Remark that the dictionary instance has to be disabled first by calling
TtsDisableUsrDictEx. TtsDisableUsrDictEx can also be used to
simply disable (exclude) the dictionary for a lookup. Disabling is not
the same as unloading; disabling means that the dictionary instance
remains in memory and waits for being enabled again, while
unloading a dictionary instance means that the dictionary instance is
actually removed from memory.

A typical sequence of dictionary API calls may look like:

HTTSINSTANCE hlnstance;
TtslnitializeEx (&hlnstance, pServer, ¶mList[0], &instanceData)

DictionaryData dictDatal;

HTTSDCTEG hDctEgl;
memset(&dictDatal,0,sizeof(DictionaryData));
dictDatal.uri = "c:\\us_english1.dct";

DictionaryData dictData2;
HTTSDCTEG hDctEg2;
memset(&dictData2,0,sizeof(DictionaryData));

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VI11/202

User Dictionaries

Chapter VI

dictData2.uri = "c:\\us_english2.dct";

TtsLoadUstDictEx(hlnstance,&dictDatal,&hDctEgl));
// dictionaty 1 is loaded and enabled with
// default priority

TtsProcessEx(hlnstance,pSpeakData);
// dictionary 1 is used for lookup

TtsLoadUstDictEx(hlnstance,&dictDatal,&hDctEg2));

TtsProcessEx(hlnstance,pSpeakData);
// dictionary 2 is looked up, if no entry
// found dictionaty 1 is used for lookup

TtsDisableUsrDictEx(hlnstance,hDctEg1);
TtsEnableUsrDictEx(hlnstance,hDctEgl1,0xF));
// ptiotity change of dictionary 1

TtsProcessEx(hlnstance,pSpeakData);
// dictionary 1 is looked up, if no entry
// found dictionaty 2 is used for lookup

TtsUnloadUsrDictEx(hlnstance,hDctEgl);
TtsProcessEx(hlnstance,pSpeakData);

// dictionary 2 is used for lookup
TtsUnloadUsrDictEx(hlnstance,hDctEg2);

TtsProcessEx(hlnstance,pSpeakData);
// no dictionaries used

Restrictions on user dictionaries

The following restrictions apply to user dictionaries:

e User dictionary lookup will not be performed when the TTS
channel is processing in "word by word" mode (enabled by
the escape sequence <ESC>M1)

® You cannot call dictionary functions on a TTS engine
instance that is in the state of processing.

Automated User dictionary Loading

User dictionaries can be loaded automatically when a TTS instance is
created or the language and/or voice is switched by specifying them
in the Server configuration file. Note that this only applies to systems
using the Client/Setver mode.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VII1/203

User Dictionaries

Chapter VI

See the “Configuration Parameters — default_dictionaries” section in
the “Configuration Files” section of the “User Configuration”
chapter for more details.

User Dictionary Editor (Windows only)

The Telecom RealSpeak/Host SDK comes with the Scansoft User
Dictionary Editor (UDE), which serves as a GUI for creating and
editing of user dictionaries. It is installed automatically. Please check
out the help documentation that comes with the UDE for detailed
instructions. The UDE help file is available via the RealSpeak 4.0
Program group under the Windows Start Menu or directly as
“\speech\components\common\rsude.chm" under the RealSpeak
installation directory.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VII1/204

Appendix

User Rulesets

Introduction

Custom G2P Dictionaries

F

Rulesets allow the user to specify "search-and-replace” rules for
certain strings in the TTS "input text". Whereas user dictionaries only
support search and replace functionality for literal strings that are
complete words, rulesets support any search pattern that can be
expressed using regular expressions (e.g. multiple words, part of a
wortd).

The rulesets are applied before any other text normalization is
performed, including user dictionary lookup.

The details of how the text normalization can be tuned via user
rulesets are described in the next section.

A ruleset is basically a collection of rules; each rule specifies a “search
pattern” and the corresponding “replacement spec”.

The syntax and semantics of the “search pattern” and the
“replacement spec’” match those of the regular expression library that
is used, being PCRE v5.0 which corresponds with the syntax and
semantics of Petl 5. For the Petl 5 regular expression syntax, please
refer to the Perl regular expressions main page at
http://petldoc.petl.org/petlre.html. For a description of PCRE, a
free regular expression library, see http://www.pcre.org/.

More details on the syntax are described in the “Ruleset format”
section.

Rulesets can be loaded for a certain TTS instance via the SetParam(s)
API function or they can be loaded automatically when a TTS
instance is created by specifying them in the Server configuration file.
The rules of a loaded ruleset are applied only when the active
language matches the language that is specified in the header section
of the ruleset.

Several rulesets can be active simultaneously for the same language;
the most recently loaded ruleset is applied first (it has the highest

priority).

Tuning of text normalization via rulesets

The Regular Expression Text-To-Text (RETTT) engine instance
applies the rules of the rulesets. It is an optional subcomponent of
a Text-To-Text engine instance.

The rulesets are applied before any other text normalization is
performed, including user dictionary lookup. The only
transformations on the TTS input text that can occur before the
RETTT processing are the transcoding (because the character set
does not match the native character set; this is explained in more
details in the “Ruleset format” section) and the translation of SSML
markup into native RealSpeak markup. So if SSML markup has

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/205

Appendix

Ruleset format

Custom G2P Dictionaries

F

been used, it will already be transformed into the native RealSpeak
markup format.

If the TTS input is provided via the user call-back mechanism, it is
first collected entirely, before the rules are applied. The first rule of
the most recently loaded active ruleset is applied first to the
complete input text. Then, regardless of the effect of this rule, the
second rule is applied; and so on. The rewriting stops when the last
rule of the first loaded ruleset has been applied. In fact it's possible
that a later rule changes an input string that was already
transformed by a previous rule.

In general, a ruleset consists of a header section, followed by a data
section. The format of a ruleset is described formally below using the
same notation as for user dictionaries (see “Symbols Legend” table in
the “User Dictionary” section).

A ruleset can be formally described as:

ruleset :=

(<comment-line> | <blank-line>)*
<header-section>
<data-section>?

Comment lines have the '#' character as the first non-blank character.
A blank line is a line consisting entirely of linear whitespace
characters. Using regular expression syntax they can be expressed as:
comment-line :=
M\ s*kH R\ n
blank-line :=
“\s*¥\n

Header Section

The "headet" section contains one or more key definitions (the
definition of the "language" key is required, see further); each
definition can span one line only.
header-section :=

"[header]"\n

(<comment-line> | <blank-line> |

<key-definition>)+

Comment lines and blank lines can be inserted everywhere.
Key definitions have the following syntax:
key-definition :=

<key-name> = <key-value><comment>?\n

Blanks (spaces or tabs) before and after the equal sign are optional.
If the key value contains blanks, it must be enclosed in double quotes.
If a double quote is needed as part of the value, it needs to be escaped

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/206

Appendix

Custom G2P Dictionaries

F

(\"). The actual syntax of the <key-value> depends on the <key-
name>.

A <comment> can follow the <key-value>, it lasts until the end of
the line.

comment :=

H#H.*$

The only currently supported key names are: “language” and
“charset”. This means that <key-definition>
can be expressed semantically as:
key-definition :=
<language-definition> | <charset-definition>

The <language-definition> is required for each header, the value is
the 3-letter TTS language code which is also used to specify the
language of user dictionaries, see the table in the “RealSpeak
Languages” for the list of available language codes.

language-definition :=
language = <language-code><comment>?\n

language-code := ENA|ENG |ENU |DUN|FRC|GED|...

The <charset-definition> is optional and specifies the character set
used for the encoding of the rules. Currently the character set must
match the native character set for the language specified in the
<language-definition>. See the table in the “RealSpeak Languages”
appendix for a list of the native character set for each language.
charset-definition :=

charset = <charset id> <comment>? \n

charset id :=
"windows-1252" | "windows-1251" |
"windows-932"|...

Data Section

The "data" section contains zero or more "rules", a rule can occupy
one line only.
data-section :=

"[data]"\n

(<comment-line> | <blank-line> | <rule>)*

Comments can also be inserted at the end of a rule and start with a '#'
character and span till the end of the line.
A rule has the following syntax:
rule :=
<search-spec> "-->" <replacement-spec> <comment>? \n

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/207

Appendix

Custom G2P Dictionaries

F

The syntax and semantics of the <search-spec> and the
<treplacement-spec> matches the one of the used Regular expression
library, being PCRE v5.0, this corresponds with the syntax and
semantics of Petl 5. For Petl 5 regular expression syntax, please refer
to the Perl regular expressions man page at
http://perldoc.perl.org/perlre.html. For a description of PCRE, a
free regular expression library, see http://www.pcre.org/.

For a detailed description, see the "pcrepattern.html” document in the
PCRE distribution package.

If markup is being used (in the soutrce and/or replacement pattern), it
must be in the native RealSpeak markup format.

Note that special characters and characters with a special meaning
need to be escaped.

Some examples are:

e In the search pattern: non-alphanumerical characters with a
special meaning like dot(.), asterisk (¥), dollar ($), backslash
(\) and so on, need to be preceded with a backslash when
used literally in a context where they can have a special
meaning (e.g. use * for *). In the replacement spec this
applies to characters like dollar ($), backslash (\) and double
quote (").

e Control characters like \t (Tab), \n (Newline), \r (Return),
etc.

e Character codes: \xhh (hh is the hexadecimal character code,
e.g. \x1b for Escape), \ooo (000 is the octal notation, e.g.
\033 for Escape).

e Perl5 also predefines some patterns like “\s” (whitespace)
and “\d” (numeric).

For a full description please refer to the Perl5 man pages.

Rule example

/David/ --> "Guru of the month May"
Replaces each occurrence of the string "David" by "Gutu of
the month May".

Search-spec

In general the format of the search-spec is:
Search-spec :=
<delimiter> <regular-expression> <delimiter> <modifier>*

<delimiter> is usually '/', but can be any non-whitespace character
except for digits, back-slash ("\") and '#'"... This facilitates the
specification of a regular expression that contains '/', because it
eliminates the need to escape the '/".

<modifier> := [imsx]

optional modifiers:

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VI11/208

Custom G2P Dictionaries

Appendix F

1 (search is case-insensitive);
e m (let " and '$' match even at embedded newline
characters);

A

e s (let the " pattern match even at embedded newline
characters, by default ' matches any arbitratry character,
except for a newline);

e x (allows for regular expression extensions like inserting
whitespace and comments in <regular-expression>).

Replacement-spec

The format of the replacement spec is a quoted ("...") string or a
non-blank string in case the translation is a single word. It may
contain back references of the form $n (n: 1, 2, 3, ...) which refer to
the actual match for the n-th capturing subpattern in <search-spec>.
E.g. $1 denotes the first submatch. A back reference with a number
exceeding the total number of submatches in <search-spec>, is
translated into an empty string. A literal dollar sign (§) must be
escaped (\9).

Everything following <replacement-spec> and on the same line is
considered as comment when starting with '#', else it is just ignored.

Some examples of rules

/<SSFT>/ --> "Scansoft"

Rewrites "<SSFT>" into "Scansoft".

/(Quack)/ > ($1)

Replaces "Quack" by "(Quack)".

/(Quack)/ > (82)

Replaces "Quack" by "()".

/help me/ --> "\x1b\\vol=95\\help me\x1b\\vol=80\\"
Demonstrates the insertion of native markup (volume tag).
Rewrites for instance "Please, help me!" into
"Please, <Esc>\vol=95\help me<Esc>\vol=80\!".

/(\8)==\)(\s)/ --> "$1ha ha$2"

Where "\s" matches any whitespace character,

$1 corresponds with the matched leading whitespace character
and $2 corresponds with the matched trailing whitespace
character. This rule rewrites for instance " :-) " into " ha ha ".

/(\t2\n)-{3,} *Begin included message *-{3,} (\t?\n)/ --> "$1Start

of included message:$2"
Rewrites for instance
---- Begin included message ----
into
Start of included message:

/\x80 ?(\d-H)\.(\d{2})\d*/ --> "$1 euro $2 cents"

Rewrites for instance "€9.751" into "9 euro 75 cents".

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VII1/209

Custom G2P Dictionaries

Appendix F

Restrictions on rulesets

The following restrictions apply to rulesets:

e TTS Markers generated while rulesets are loaded have
dummy values (0) for the source position field, because the
source positions are only determined after the rulesets have
been applied.

¢ You cannot load or unload rulesets on a TTS engine instance
that is in the state of processing,

Effect of rulesets on the T'TS performance

The loading of rulesets can effect the performance of the TTS
process (Process() and ProcessEx() API function).

An important note is that certain items that may appear in regular
expression patterns are more efficient than others.

E.g. a character class (e.g. "[aciou]") is more efficient than the
equivalent set of alternatives (e.g. "(a|e|i|o|uw)").

See the "pereperform html" main page of the PCRE package for
more details.

Ruleset API functions

Rulesets can be loaded and unloaded via the TtsSetParam and
TtsSetParams API functions. The TTS_RULESET _LOAD_PARAM
parameter allows the loading and enabling of the specified ruleset.
Multiple rulesets can be loaded by specifying multiple
TTS_RULESET_LOAD_PARAM parameters in one or more
TtsSetParam(s) calls.

The most recently loaded ruleset is applied first (so has the highest
priority).

If multiple rulesets are specified for one TtsSetParams call then the
ones with higher indices in the parameter array argument are loaded
last. If an already loaded ruleset is specified, the old copy is first
unloaded.

TtsSetParams with TTS_RULESET_UNLOAD_PARAM parameter
will unload the specified ruleset.

The information regarding the ruleset is specified via a structure of
type TTS_FETCHINFO_T, whose address is stored in the “pObj”
field of the parameter value structure (of type
TTS_PARAM_VALUE_T).

Note that the TtsSetParams call to "unload" a ruleset should provide
the same info as the corresponding "load" call. This is especially
needed when a relative URI or path was specified and the
SPIINET_URL_BASE

property was set.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/210

Custom G2P Dictionaries

Appendix F

Sample code

See the section “Defined Data Types” in the “RealSpeak API”
chapter for a description of the TTS_FETCHINFO_T structure type.

A typical sequence of ruleset API calls may look like:

HTTSINSTANCE hlnstance;
TTS_PARAM_T aParamlList[1];
TTS_FETCHINFO_T ttsFetchInfo;

TtslnitializeEx (&hlInstance, pServer, &Parm, &instanceData)

aParamList[0].nParam =
TTS_RULESET_LOAD_PARAM;

ttsFetchInfo.szUri = "c:\ \us_english.trs";
ttsFetchInfo.szContentType =
"application/x-realspeak-rettt+text";
ttsFetchInfo. hFetchProperties = NULL;
aParamList[0].paramValue.pObj =

&ttsFetchInfo;
TtsSetParams(hInstance, aParamlList, 1);

TtsProcessEx(hlnstance,pSpeakData);
/* ruleset “us_english.trs” is applied */

aParamList[0].nParam =
TTS_RULESET_UNLOAD_PARAM;

aParamList[0].paramValue.pObj =
&ttsFetchlnfo;

TtsSetParams(hInstance, aParamlList, 1);

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/21 1

Custom G2P Dictionaries

Appendix F

Automated ruleset loading

Rulesets can be loaded automatically when a T'TS instance is created
by specifying them in the Server configuration file. Note that this
only applies to systems using the Client/Server mode.

See the “Configuration Parameters — default_rulesets” section in the

"Configuration Files" section in the “User Configuration” chapter for
more details.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/212

Appendix

Custom G2P Dictionaries

F

Custom G2P Dictionaries

Nuance's RealSpeak system now offers support for custom G2P
dictionaries. A custom G2P dictionary module is an add-on module
specifically designed to improve the quality of pronunciation for
certain kinds of words (for example, proper names).

Check the language specific manuals for a list of the currently
available custom G2P dictionaries. Check with Nuance for the
availability of other custom G2P dictionary modules.

One or more custom G2P dictionary modules can be loaded into
memory using the API function TtsLoadG2PdictList and unloaded
from memory using TtsUnload G2PdictList.

A custom G2P dictionary module that has been loaded is dynamically
enabled/disabled by using the 4SML ‘ssft-domaintype’ attribute (a
proprietary extension to SSML) or the native <esc>\domain)\ tag.
Refer to the “SSML Support” chapter and the language specific
documentation for details.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/213

Appendix

Custom Voices

F

Custom G2P Dictionaries

ScanSoft's RealSpeak system now offers support for custom voices.
Scansoft develops a custom voice at the request of a specific
customer, possibly using voice talent contracted by the customer. As
part of this process the custom voice font will be given a name that
will uniquely identify it for the customer. Each custom voice will go
with a specific language (for example, American English).

A custom voice can be selected in the same way as a standard voice,
except that when using the TTSPARAM structure, the voice must
always be identified via a string, not a number.

RealSpeak allows the selection of a voice in three different ways:

When the engine instance is initialized. by setting the
appropriate values in the TTSPARAM structure, as follows:
0 SetnVoice to TTS_VOICE_USE_STRING
0 Set szVoiceString to string specifying name of the
voice to use. The voice name is defined by the
customer (see above).
Example:
Parm.nVoice = TTS_VOICE_USE_STRING;
szVoiceString = “Elizabeth”;

Using the TtsSetParam(s) function, providing the instance is
not busy executing the TtsProcess(Ex) function in another
thread.

Using markup: the SSML <voice> element and voice
attribute, the SAPI5 voice tag ot the native <esc>\voice\

tag.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/214

Custom G2P Dictionaries

Appendix F

Configuration Files

The TTS Server is configured using a XML configuration file, by
default “config/ttssetver.xml” within the RealSpeak Telecom
installation directory, but this can be changed by specifying one or
more -c options (configuration file options) when starting the TTS
Server.

Note that when operating RealSpeak in in-process mode, the server
configuration file is not used at all (except when using the SAPI5
interface).

If more then one -c option is specified, the configuration parameters
in each configuration file override those specified by earlier -c
options. This can be used to create OEM or site-specific
configuration files that inherit the ScanSoft provided defaults but
override a few parameters. This should be done by copying over
ttsserver.xml, removing all the parameters except the ones that need
to be customized, then customizing those parameter values.

Configuration file format

Within each configuration file, each configuration parameter is
specified by one or more XML elements, with the value of the
parameter contained within that element.

Here is a sample configuration file followed by a description of the
elements and attributes:

<rxml version="1.0" encoding="1SO-8859-1">>

—n

<?Pxml-stylesheet type="text/xsl"
href="ttsserver.xsl"?>

<ttsserver version="4.0.0"
xmlns="http://www.scansoft.com/rsh40/ttsserver">

<network_service> </network_service>
<network_port> 6666 </network_port>
</ttsserver>

The sample configuration file consists of the following parts:
e XML declaration:
<rxml version="1.0" encoding="1SO-8859-1">>

e Style sheet declaration for viewing the file in a Web browser
(optional):

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/215

Appendix F

Custom G2P Dictionaries

—n

<?xml-stylesheet type="text/xsl"
href="ttsserver.xsl"?>

The root element of the document (as specified in the
document type declaration), i.e., the container element for
parameter elements:

<ttsserver version="4.0.0"
xmlns="http://www.scansoft.com/rsh40/
ttsserver' >

One or more elements which are parameters, such as:

<network_service> </network_service>
<network_port> 6666 </network_port>

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VIII/216

Appendix F

Configuration parameters

Custom G2P Dictionaries

Not all parameters need to be set; some are optional with the TTS
server automatically detecting the appropriate value for that

installation.

Single value parameters

The following parameter names are specified as an element name.

Environment Variable Overrides

Element

<SSFTTTSSDK>

<TMPDIR>

<USER>

Network Parameters

Elements

<network_service>

<network_port>
<network_accept_backlog>

<network_client_limit>

Description

Installation directory

Temporary files directory

User ID

Description

TCP/IP service name, if empty
network_port is used

TCP/IP port number

TCP/IP backlog for accepting

connections

Maximum number of
connections before refusing

clients

Default

optional
parameter, by
default auto-
detected
optional
parameter, by
default auto-
detected
optional
parametet, by
default auto-
detected

Default

6666

1000

Optional

yes

yes

yes

Optional

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter VIII/217

Appendix F

Elements

<network_reuse_addr>

<network_interface>

<network_timeout>

Licensing Parameters

Elements

<license_mode>
<license_servers>

Custom G2P Dictionaries

Description Default

Whether to allow the server to false
listen for connections on an
already active TCP/IP port. By
default, false, as doing so
exposes a well-known security
flaw where other processes could
hijack the port afterwards. Only
switch the value to true if
directed by ScanSoft Technical
Support to workaround OS
problems with releasing the
TCP/IP pott on shutdown.
Network interfaces to listen for
connections upon. By default,
the server listens for connections
on all network interfaces.
Uncomment and set this to
enhance security in cases where
the server should only accept
clients from the same host (use a
value of 127.0.0.1), or where the
server should only accept clients
from a single trusted network
interface (use the TCP/IP
address for that interface). This
parameter is optional.

Network timeout, in seconds, for 60
the client/server connection.

The worst-case for detecting a

lost connection is 2 times this

value.

all interfaces

Description

Licensing mode, default or explicit default
See Multiple Value Parameters

St

Default

Optional

yes

27000@localho

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter VIII/218

Appendix F

Speak Parameters

Custom G2P Dictionaries

Elements Description Default
<default_rate> Default speaking rate on the RealSpeak 50
rate scale of 1 - 100. This value is
overridden if the rate is set via the
RealSpeak API or markup, and has no
effect for SAPI where SAPI always
specifies its own default rate.
<default_volume> Default volume level on the RealSpeak 80
volume scale of 0 - 100. This value is
overridden if the volume is set via the
RealSpeak API or markup, and has no
effect for SAPI where SAPI always
specifies its own default volume.
Miscellaneous Server Parameters
Elements Description Default
<default_dictionaries> See Multiple Value Parameters
<default_rulesets> See Multiple Value Parameters
<dictionary_default_path> Default path for user dictionaries.
<run_in_background> Run in the background versus as an false
interactive process.
<produce_core_files> Whether to produce core files on true
crashes for UNIX variants.
Internet Fetch Cache Parameters
Elements Description Default
<cache_directory> Directory name for the disk ${TMPDIR}/t
cache. If relative, the file path tsserver_cache_
is relative to the containing ${USER}
configuration file.
<cache_total size> Maximum size of the disk 200
cache in MB
<cache_entry_max_size> Maximum size of a single disk 20
cache entry in MB
<cache_entry_exp_time> Time when an unused disk 3600
cache entry gets purged, in
seconds
<cache_low_watermark> When maximum cache size is 180
reached, what the cache size
must be reduced to, in MB
<cache_unlock_entries_at_startup> Reserved for future use, leave true
unchanged
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide

Chapter VIII/219

Appendix F

Custom G2P Dictionaries

Internet Fetch Parameters

Elements

<inet_proxy_server>

Description

Address a http proxy server to use, e.g.

Default

no proxy is used

127.0.0.1 (empty value)
<inet_proxy_setver_port> Port of the http proxy server to use, e.g. 8080
8080, ignored unless inet_proxy_server
is non-empty
<inet_user_agent> User agent name in HTTP/1.1 headers ~ RealSpeak
Host/4.0
<inet_accept_cookies> Whether to accept HTTP cookies (true true
or false)
<inet_extension_rules> See Multiple Value Parameters
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide

Chapter VII1/220

Custom G2P Dictionaries

Appendix F

Diagnostic and Error Logging Parameters

Elements Description Default
<log_file_enabled> Whether to log errors and diagnostics true
(true or false)
<log_file _base_name> Error and diagnostic log file base ${TMPDIR}/tt
name. This will have "1.xml"and sserver_log

"2.xml" appended for the initial and ${USER}_

roll-over log file names. If relative, the

file path is relative to the containing

configuration file. If empty, messages

will go to standard output.
<log_file_max_size> Log tile maximum size, in MB 50
<log_level> Diagnostic log level, by default 0, 0

where 0 enables errors, 1 enables errors

and warnings, and higher levels enable

diagnostic messages (which may greatly

impact performance).

Multiple Value parameters

The following parameters can have multiple values, and are specified
as a combination of nested elements.

inet_extension_rules

Rules for mapping file name extensions to MIME content types,
specified as a sequence of <extension> elements where the name attribute is
the extension and the value is the MIME content type.

For example, these are the RealSpeak defaults:

<inet_extension_rules>
<extension name=".alaw"> audio/x-alaw-basic </extension>
<extension name=".ulaw"> audio/basic </extension>
<extension name=".wav'"> audio/x-wav </extension>
<extension name=".1.16"> audio/1.16;rate=8000 </extension>
<extension name=".txt"> text/plain </extension>
<extension name=".xml"> text/xml </extension>
<extension name=".ssml" >application/ssml+xml </extension>
<extension name=".bdc"> application/edct-bin-dictionary </extension>
<extension name=".dct"> application/edct-text-dictionary </extension>
<extension name=".tdc"> application/edct-text-dictionary </extension>

</inet_extension_rules>

default_dictionaries

List of default dictionaries to load, where each matching dictionary is
loaded when each port is opened. Language and priority attributes are
required, and a voice attribute is optional (if not specified, the
dictionary is loaded for all voices for that language). The value is the

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/221

Appendix

Custom G2P Dictionaries

F

dictionary path or URI. This is an optional parameter, by default
empty.

For example, the following would load american_english.bdc for all
American English voices, that dictionary as well as jill.bdc for the
American English Jill voice, and no default dictionaries for any other
language.

<default_dictionaries>
<dictionary language="American English" priority="1000">
http://myserver/american_english.bdc
</dictionary>
<dictionary language="American English" voice="]ill"
priotity="1001">
http://myserver/jill.bdc
</dictionary>
</default_dictionaries>

default_rulesets

List of default rulesets to load, where each matching ruleset is loaded
when each port is opened. This element is optional; by default no
rulesets are loaded. A default ruleset is specified via a <ruleset>
element. The “language” attribute is required, the “content-type” and
“voice” attributes are optional. The default value for the content-type
is "application/x-realspeak-rettt+text".

If the voice attribute is not specified, the ruleset is loaded for all
voices for that language. The value is the ruleset path or URL

For example, the following would load american_english.trs for all
American English voices, that ruleset as well as david.trs for the
American English David voice, and no default rulesets for any other
language.

<default_rulesets>
<ruleset language="American English">
http:// myserver/american_english.trs
</ruleset>
<ruleset language="American English" voice="David">
http://myserver/david.trs
</ruleset>
</default_rulesets>

license_setrvers

RealSpeak license server TCP/IP addresses, where at least one license
server must be defined, and multiple values are used to configure
redundant license servers for fail-over support. See the RealSpeak
Licensing Handbook for details on license server configurations and
considerations, as well as detailed information on using this parameter

propetly.
For example, this is the RealSpeak default:

<license_setvers>
<server>27000@localhost</server>
</license_servers>

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter VII1/222

RealSpeak Telecom
Sottware Development Kit

Chapter IX

RealSpeak Email Pre-Processor

Programmer’s Guide

Speechify API

Appendix L

RealSpeak E-mail Preprocessor

Introduction

The ScanSoft e-mail preprocessor (EMPP) has been developed to
analyze a specific type of text: e-mail messages. E-mail messages
differ from any average type of text in both structure and contents.

An e-mail message consists of two clearly distinguished parts: the
header and the body. A substantial part of the header contains routing
and administrative information, which is irrelevant to the user. Both
the header and the body contain all kinds of e-mail specific text
features, e.g. e-mail addresses, emoticons such as smileys, etc.
Furthermore, informal writing is often combined with a lack of
grammatical conventions. Spelling rules are frequently violated,
punctuation is often omitted, etc.

Although the standard ScanSoft Text-To-Speech system can handle
special text items (abbreviations, numbers, dates, etc.), it is not
capable of correctly handling all e-mail specific text features. These
text features are therefore dealt with by the e-mail preprocessor. The
EMPP transforms e-mail specific information into a format that
complies with the rules of the standard ScanSoft Text-To-Speech
system. The EMPP is a plug-in preprocessing module of the ScanSoft
Text-To-Speech system. It replaces the preprocessor of the standard
Text-To-Speech system.

In the following sections you will find a description of the
functioning of the ScanSoft e-mail preprocessor as well as an
overview of its features.

The e-mail preprocessor has two main tasks: processing of the e-mail
header and processing of the body of the e-mail message.

The input to the EMPP consists of one or more e-mail messages. In
order to process the e-mail header, the EMPP extracts relevant
header fields and then provides an intelligent header field reading.

RealSpeak Telecom SDK V4.0

Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 1X/224

Speechify API

Appendix L

During the processing of the e-mail body, the text is divided into
smaller text units, called text-to-speech messages, which are
synthesized by the Text-To-Speech system. Text normalization is
applied to e-mail specific text features such as e-mail addresses,
proper names, emoticons, URLs (Universal Resource Locators), etc.
For the text normalization of an e-mail message, the ScanSoft EMPP
applies linguistic rules and performs dictionatry look-up, in order to
yield an adequate phonetic transcription. The EMPP also supports
the ScanSoft user dictionary mechanism, which allows the user to
customize the output of the e-mail processing.

E-Mail Header Processing
Header Field Extraction

An e-mail message consists of two clearly distinguished parts: the
header and the body. The EMPP detects the header and extracts the
relevant header fields. Information that is of no interest to the user
(such as routing information) is not retained.

The EMPP extracts the following header fields:

From Field Contains the sender’s name and/or address
Date Field Contains the date and time of sending

Subject Field Optionally contains the subject of the e-mail

The extraction of the header fields is based on the detection of
specific keywords in the e-mail header. The supported keywords for
the extraction of the header fields are language specific and are listed
in the “E-mail Preprocessot” chapter of the language-specific
manuals. Some examples of keywords are listed below. Note that the
keywords do not necessatily have to be presented in the same
language as the body of the e-mail.

From Field From:
Author:
Sender:
De:
Von:

Date Field Date:
Enviado:
Gesendet:

Subject Field: Subject:
Subj:

Asunto:

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1X/225

Speechify API

Appendix L

Header Field Reading

Betreff:

The following is an example of header field extraction. The original
header holds information that is irrelevant to the user. After
extraction of date, sender and subject, the processed header merely
mentions the Date field, the From field and the Subject field:

Original header:

From owner-techlink@eva.dc. LSOFT.COM Wed Jan 31 07:04:47 1996
Return-Path: <owner-techlink@eva.dc. LSOFT.COM>
Received: from lhsl.lhs.be by mars.lhs.be (4.1/SMI-4.1)

id AA03971; Wed, 31 Jan 96 07:04:44 +0100
Received: (from uucp@localhost) by lhsl.lhs.be (8.6.11/8.6.11) id
HAA08429; Wed, 31 Jan 1996 07:02:54 +0100
Received: from smtpgate.cmp.com ([198.80.26.6]) by keystone.cmp.com
with ESMTP

(1.37.109.14/17.1) id AA029325060; Tue, 30 Jan 1996 18:37:40 —
0500
X-Matiler: Microsoft Mail via PostalUnion/SMTP for Windows NT
Approved-By: TechWeb <techweb@CMP.COM>
Message-Id: <1996Jan30.181300.1151.634035@smtpgate.cmp.com>
Date: 30 Jan 96 18:40:28 —-0500
Reply-To: TECHLINK-REQUEST@eva.dc. LSOFT.COM
From: TechWeb <techweb@cmp.com>
Organization: CMP Publications, Inc.
Subject: TechWeb's TechLink newsletter; January 3
To: Multiple recipients of list TECHLINK

<TECHLINK®@eva.dc. LSOFT.COM>

Status: R

Extracted header fields:

Date: 30 Jan 96 18:40:28 -0500
From: TechWeb <techweb@cmp.com>
Subject: TechWeb's TechLink newsletter; January 3

After the header fields have been extracted, they are processed by the
EMPP. The header field keywords (see above) are replaced by an
introductory message. The remainder of the header fields is processed
by the EMPP in order to allow the Text-To-Speech system to
intelligently read the fields. See the “E-mail Preprocessor” chapter of
the language-specific manuals for the details.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 1X/226

Appendix

Speechify API

L

E-Mail body processing

Message Extraction

Text Normalization

The e-mail preprocessor splits the body of the e-mail message into
text-to-speech messages. This is done on the basis of a number of
criteria, such as punctuation, capitalization, layout, intelligent
abbreviation handling, etc.

See the “E-mail Preprocessor” chapter of the language-specific
manuals for the details.

An e-mail message typically contains e-mail specific text features, such
as e-mail addresses, URLs, file names, emoticons, etc. The EMPP
transforms these e-mail specific features into a format that complies
with the rules of the standard text normalization of the ScanSoft
Text-To-Speech system.

Refer to the “E-mail Preprocessor” chapter of the language-specific
manuals for the details.

Customizing the E-Mail Preprocessor

The e-mail preprocessor supports the standard ScanSoft Text-
To-Speech SDK user dictionary mechanism, which allows the user to
customize the output of the e-mail preprocessor. The user dictionary
is consulted both during the header processing and the body
processing.

For the details of customization of the reading of the e-mail header
and body, refer to the “E-mail Preprocessor” chapter of the language-
specific manuals for the details.

For more information on how to build and use user dictionaries, see
the User Dictionaries section of the “User Configuration” chapter.

Support for markup in E-mail mode

The e-mail preprocessor can, in general, be activated via markup of
the input text using the native <ESC>%email tag or via the setting of
the “ssft-dtype” (document type) attribute to “email” for the
<speak>, <paragraph> or <sentence> element in SSML mode. For
Mandarin Chinese and Cantonese the document type should be set to
email_xxx where xxx is win950 or win936 (Mandarin only) depending
on the desired native character set (see also the language specific
uset’s guides). Note that the e-mail preprocessor can also be activated
via the APIL

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter 1X/227

Speechify API

Appendix L

Most tags supported in standard text mode are also supported in e-
mail mode apart from the few exceptions listed below.

Native markup

e No support for any of the <ESC>\tn=x\ text normalization
(TN) tags except for <ESC>\tn=spell\ and
<ESC>\tn=normal\. Markup for the other TN types is
simply ignored.

e No support for <ESC>M1 (word-by-word read mode) and
<ESC>M3 (line-by-line read mode)

SSMLmarkup

e No support for <say-as> tags except for <say-as interpret-
as="spell”> and <say-as type="spell-out”>. Markup for the
other say-as types is simply ignored.

E-mail Preprocessor API functions

The e-mail preprocessor can be activated via the TtsSetParam and
TtsSetParams API functions by setting the
TTS_DOCUMENT_TYPE_PARAM parameter to DOC_EMAIL.
To disable the E-mail preprocessor the parameter must be set to
DOC_NORMAL.

See the “RealSpeak API” chapter for a description of the
TtsSetParam(s) functions.

Sample code
A typical sequence of code using the e-mail preprocessor may look
like:
HTTSINSTANCE hlnstance;
TTS_PARAM_T aParamList[1];
TtsInitializeEx (&hlnstance, pServer, &Parm, &instanceData)
/¥ Activate the e-mail preprocessor ***/
aParamList[0].nParam =
TTS_DOCUMENT_TYPE_PARAM;
aParamList[0].paramValue.nNo = DOC_EMAIL;

TtsSetParams(hInstance, aParamlList, 1);

/¥ Process an e-mail document ***/

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1X/228

Speechify API

Appendix L

TtsProcessEx(hlnstance,pSpeakData);

/**¥* Deactivate the e-mail preprocessor ***/

aParamList[0].nParam =
TTS_DOCUMENT_TYPE_PARAM;

aParamList[0].paramValue.nNo = DOC_NORMAL;

TtsSetParams(hlnstance, aParamlist, 1);

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter 1X/229

RealSpeak Telecom
Sottware Development Kit

Chapter X

Speechify API

Programmer’s Guide

Speechify API

Introduction

API Reference

RealSpeak Telecom 4.0 and RealSpeak Solo 2.0 support neatly all of
the SWltts API of Speechify 3.0 and Speechify Solo 1.0 to ease the
migration of existing Speechify based integrations and applications to
the next-generation RealSpeak products that incorporate Speechify
technology. New software should only be developed using the native
RealSpeak APIs or the Microsoft SAPI 5 APIs, however.

For a detailed list of Speechify functionality that is not present in the
RealSpeak emulation of the SWltts API, and migration procedures,
see the RealSpeak Migration Guide for Speechify Customers.

This chapter describes RealSpeak support for the SWltts API,
including functions that are not supported. For RealSpeak, the main
SWitts API function prototypes, types, error codes, and constants are
located in the header file SWltts.h.

Calling convention

The calling convention is dependent on the operating system, and is
defined in the SWltts.h header file.

On Windows, all SWItts API functions use the stdcall (or Pascal)
calling convention. The header files contain the appropriate compiler
directives to ensure correct compilation. When writing callback
functions, be sure to use the correct calling convention.

Under Windows:

Hdefine SWIAPI __ stdcall

Under UNIX:

#define SWIAPI

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter X/231

SDK’s preferred character set

Result codes

The SDK’s preferred character set varies by language in the same way
as the native RealSpeak API. All strings passed to the API by calls to
SWittsSpeak(), SWlttsSpeakEx(), and SWlttsDictionarylLoad() are
converted to the native character set for that language before they are
processed internally. Consequently, in RealSpeak, text entered into
this function must be representable in the preferred character set even
if it is encoded in another character set supported by the APL.
Bookmark IDs are converted to 0-terminated wide character strings

before they are returned to the user.

See the RealSpeak User’s Guide for each language for details.

The following result codes are defined in the enum SWlttsResult in

SWits.h .

SWltts_ ALREADY_EXECUTING_API

This API function
cannot be executed
because another API
function is in progress

on this port on another
thread.

SWitts. ALREADY_INITIALIZED

SWlttsInit() was called
when the SWltts API
library was already
initialized.

SWItts CONNECT_ERROR

The SWltts API could
not connect to the
engine.

SWItts_ DICTIONARY_ACTIVE

The dictionary is active;
it cannot be activated
again or cannot be freed
until deactivated.

SWltts_ DICTIONARY_LOADED

Dictionary is already
loaded.

SWltts. DICTIONARY_NOT_LOADED

Dictionary has not been
loaded before attempting]
to activate it.

SWItts_ DICTIONARY_PARSE_ERROR

\Any error during
dictionary parsing.

SWltts. DICTIONARY_PRIORITY_ALREADY_
EXISTS

INo duplicate priorities
are allowed in
dictionaries of the same
type and language.

SWItts_ ERROR_PORT_ALREADY_STOPPING

SWttsStop() was called
'when the port was
already in the process of

stopping.

SWItts_ ERROR_STOP_NOT_SPEAKING

SWlttsStop() was called
when the port was not

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter X/232

speaking.

SWltts_ FATAL_EXCEPTION

(Windows only.) A crash
occurred within the
SWltts API library. This
is an unrecoverable error
and you should close the
application.

SWitts_ HOST_NOT_FOUND

Could not resolve the
host name or IP address.

SWltts_INVALID_MEDIATYPE

Unsupported MIME
content type for the

dictionary format or

speak text format.

SWltts_ INVALID_PARAMETER

One of the parameters
passed to the function
(was invalid.

SWltts_INVALID_PORT

[The port handle passed
is not a valid port
handle.

SWltts_INVALID_PRIORITY

Dictionary priority value
lis out of range.

SWltts_ LICENSE_ALLOCATED

A license has already
been allocated for this
port.

SWltts_ LICENSE_FREED

A license has already
been freed for this port.

SWItts_ MUST_BE_IDLE

This API function can
only be called if the TTS
port is idle.

SWltts_ NO_LICENSE

There are no purchased
licenses available.

SWItts. NO_MEMORY

IAn attempt to allocate
memory failed.

SWltts. NO_MUTEX

IAn attempt to create a
new mutex failed.

SWItts NO_THREAD

IAn attempt to create a
new thread failed.

SWltts. NOT_EXECUTING_API

IAn internal error. Notify
ScanSoft technical
support if you see this
result code.

SWltts PORT_ALREADY_SHUT_DOWN

The port is already
closed. You cannot
invoke SWIttsClosePort(

on a port that has been
closed.

SWltts PORT_ALREADY_SHUTTING_DOWN

SWIttsClosePort() was
called when the port was
already being closed.

SWItts_ PORT_SHUTTING_DOWN

IA command could not
be executed because the
port is shutting down.

SWItts_ PROTOCOL_ERROR

IAn error in the
client/server
communication protocol

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter X/233

occurred.

SWitts. READ_ONLY

SWlttsSetParameter()
was called with a read-
only parameter.

SWItts_ SERVER_ERROR

IAn error occurred on
the server.

SWItts_ SOCKET_ERROR

IA sockets error
occurred.

SWltts_ SSMI,_ PARSE_ERROR

Could not parse SSML
text.

SWItts_ SUCCESS

The API function
completed successfully.

SWItts_ UNINITIALIZED

The SWltts API is not
initialized.

SWItts. UNKNOWN_CHARSET

Character set is invalid
or unsupported.

SWItts_ UNSUPPORTED

Feature is not supported.

SWiltts_ URI_FETCH_ERROR

IAny error during URI
access other than
SWltts_ URI_NOT_FO
(UND or

SWiltts_ URI_TIMEOU
T.

SWltts_ URI_NOT_FOUND

[URI was not found: the
file does not exist or the
'web server does not
have a matching URI.

SWltts_ URI_TIMEOUT

[Timeout during web
server URI access.

SWltts_ WINSOCK_FAILED

WinSock initialization
failed. (Windows only.)

This is the full set of codes that the API functions return. No
functions return all the codes. SWitts_ SUCCESS and

SWitts_ FATAL_EXCEPTION are the only codes that are common
to all functions. All functions except SWlttsInit() return

SWitts_ UNINITIALIZED if SWlttsInit() was not the first function

called.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter X/234

SWIttsAddDictionaryEntry()

Mode
Synchronous
Purpose
Adds a list of dictionary entries to the specified dictionary.
SWilttsResult SWIAPI SWlttsAddDictionaryEntry (
SWittsPort ttsPortExt,
const char* dictionaryType,
const chat* charset,
SSFT_U32 numEntries,
SWittsDictionaryEntry* entries
);
Notes
Currently not supported, always returns SWItts_ UNSUPPORTED.
Use SWlttsDictionaryload() instead.
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter X/235

SWittsCallback()

Mode
Synchronous. Important: You must not block/wait in this function.
Purpose
User-supplied handler for data returned by the synthesis engine.
typedef SWittsResult (SWIAPI SWlttsCallback) (
SWittsPort ttsPort,
SWtts_cbStatus Status,
void* data,
void* userData
);
Parameters
ttsPort The port handle returned by SWlttsOpenPortEx() or
SWITTS_INVALID_PORT (-1) if the callback is called
from within SWlttsInit(), SWIttsOpenPortEx(), or
SWittsTerm().
status These are enumerated types that are used to inform the
callback function of the status of the void *data variable.
See table below.
data Pointer to a structure containing data generated by the
engine. This pointer is declared as void * because the
exact type vaties. The status parameter indicates the
exact type to which this pointer should be cast.
userData This is a void * in which the application programmer
may include any information that he wishes to be passed
back to the callback function. A typical example is a
thread ID that is meaningful to the application. The
userData variable is a value you pass to these functions:
. SWilttsInit() for errors during SWlttsInit()
. SWilttsTerm() for errors during SWlttsTerm()
. SWlttsOpenPortEx() otherwise
'This table lists the values of SWItts_cbStatus:
SWitts_cbAudio Audio data packet. The data structure is a
SWittsAudioPacket shown below.
SWiltts_cbBookmark User-defined bookmark. The data structure is
a SWlttsBookMark as shown below.
SWitts_cbDiagnostic Diagnostic message. The data structure is a
SWittsMessagePacket as shown below. You
only receive this message if the
SWITTSLOGDIAG environment variable is
defined.
SWitts_cbEnd End of audio packets from the current
SWittsSpeak() command. The data is a
NULL pointer.
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter X/236

SWitts_cbError

SWitts_cbLogError

SWiltts_cbPhonememark

SWtts_cbPortClosed

SWitts_cbStart

SWiltts_cbStopped

SWtts_cbWordmark

Asynchronous error message. This message is
received if an asynchronous API function
encounters an error when trying to perform
an asynchronous operation such as reading
from the network. If you receive this message,
consider it fatal for that port. You are free to
call SWltts functions from the callback but
you should consider the receipt of
SWltts_cbError fatal and call
SWittsClosePort() to propetrly clean up the
port. This event is always preceeded with a
SWltts_cbLogError event that indicates the
error reason.

The ttsPort argument is
SWitts_INVALID_PORT (-1) and the
userData argument could be NULL if the
failure occurred during SWlttsInit(),
SWlttsOpenPortEx(), or SWlttsTerm().
Make sute you check for these possibilities
before your code dereferences userData or
uses the port number for a lookup.

Error message. The data structure is a
SWittsMessagePacket which contains error
information, and is described below. The
callback may receive the cbLogError and
cbDiagnostic events at anytime, whether
inside a synchronous or asynchronous
function. The user is not allowed to call any
SWiltts function at this time. If you receive
this message, log it to a file, console, etc., and
continue execution.

The ttsPort argument is
SWitts_INVALID_PORT (-1) and the
userData argument could be NULL if the
failure occurred during SWlttsInit(),
SWlttsOpenPortEx(), or SWlttsTerm().
Make sure you check for these possibilities
before your code dereferences userData or
uses the port number for a lookup.
Represents information about a phoneme
boundary in the input text. The data structure
is a SWlttsPhonemeMark shown below.

The port was successfully closed after a call to
SWittsClosePort(). The data is a NULL
pointer.

Represents the commencement of audio
packets from the current SWlttsSpeak()
command. The data is a NULL pointer.
SWlttsStop() has been called and recognized.
There is no SWltts_cbEnd notification. The
data is a NULL pointer.

Represents information about a word
boundary in the input text. The data structure
is a SWlttsWordMark shown below

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary

Chapter X/237

Structures

The audio packet data structure is described here:

typedef struct {
void *

SSFT_U32
SSFT_U32

} SlttsAudioPacket;

Structure members:
a)

samples

numBytes

firstSampleNumber

samples;
numBytes;
firstSampleNumber;

The buffer of speech samples. You must
copy the data out of this buffer before the
callback returns as the SWltts API library
may free it or overwrite the contents with
new samples.

The number of bytes in the buffer. This
number of bytes may be larger than the
number of samples, e.g., if you've chosen a
sample format of 16-bit linear, the number
of bytes would be twice the number of
samples.

The accumulated number of samples in the
current SWlttsSpeak() call. The first packet
has a sample number of zero.

The message packet data structure is described here:

typedef struct {

time_t

SSFT_U16

SSFT_U32

SSFT_U32

const SSFT_TCHAR**
const SSFT_TCHAR**
const SSFT_TCHAR*

} SWittsMessagePacket;

Structure members:
messageTime
messageTimeMs

msgID

numKeys

messageTime;
message TimeMs;
msglD;
numKeys;
infoKeys;
infoValues;
defaultMessage

The absolute time at which the
message was generated.

An adjustment to messageTime to
allow millisecond accuracy.

An unique identifier corresponding to
one of the SWltts_err|...] defines in
SWiltts.h. A value of 0 is used for
SWiltts_cbDiagnostic messages.

The number of key/value pairs (the
number of entries in the infoKeys and
infoValues arrays). For
SWiltts_cbLogDiagnostic messages,
this is always 0. For

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide

Chapter X/238

SWiltts_cbLogError messages, this may
be 0 or greater.

infoKeys/infoValues Additional information about message,
in key/value pairs of O-terminated wide
character string text. These members
are only valid for SWltts_cbLogError
messages.

defaultMessage A pre-formatted O-terminated wide
character message. This member is
only valid for SWltts_cbDiagnostic
messages.

The bookmark data structure is described here:

typedef struct {

const SFT_TCHAR * 1D;

SSFT_U32 sampleNumber;
} SWittsBookMark;

Structure members:

1D A pointer to the bookmark 0-
terminated wide character string. It
corresponds to the user-defined integer
specified in the bookmark tag.

sampleNumber The bookmark location, specified by
an accumulated number of samples for
the current SWlttsSpeak() call. A
bookmark placed at the beginning of a
string has a timestamp of 0. The
sampleNumber always refers to a
sample number in the future (that has
not yet been received).

The wordmark data structure is described here:

typedef struct {

SSFT_U32 sampleNumber;
SSFT_U32 offset;

SSFT _U32 length;

} SWlttsWordMark;

Structure members:

sampleNumber The sample number correlating to the
beginning of this word. The
sampleNumber always refers to a sample
number in the future (that has not yet
been received).

offset The index into the input text of the first
character where this word begins. Starts
at zero.

length The length of the word in characters not
bytes.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/239

Notes

The phoneme-mark data structure is described here:

typedef struct {

SSFT_U32 sampleNumber;
const chatr* name;
SSFT_U32 duration;
SSFT_U32 stress;

} SWlttsPhonemeMark;

Structure members:

sampleNumber The sample number correlating to the
beginning of this phoneme. The
sampleNumber always refers to a sample
number in the future (that has not yet
been received).

name The name of the phoneme as a NULL-
terminated US-ASCII string. (The
phoneme names are described in the
RealSpeak supplements for each

language.)
duration The length of the phoneme in samples.
stress Not currently supported, this is always
set to 0.

The callback function is user-defined but is called by the SWltts
libraty, i.e., the user writes the code for the callback function, and a
pointer to it is passed into the SWIttsOpenPortEx() function. The
SWitts API library calls this function as needed when data arrives
from the RealSpeak engine. It is called from a thread created for the
port during the SWlttsOpenPortEx() function.

The SWltts_cbStatus variable indicates the reason for invoking the
callback and also what, if any, type of data is being passed. The
SWilttsResult code returned by the callback is not currently
interpreted by RealSpeak, but may be in the future, thus the callback
function should always return SWltts_SUCCESS.

Because the callback function is user-defined, the efficiency of its
code has a direct impact on system performance - if it is inefficient, it
may hinder the SWItts API library's ability to service the engine or
TTS server’s network connection and data may be lost.

The RealSpeak engine usually delivers audio data to the application
faster then real-time. This means that sending a large amount of text
to the SWlttsSpeak() function may cause the engine to send back a
large amount of audio before the application needs to send it to an
audio device or telephony card.

On average for Western languages, expect about one second of audio
for every ten characters of text input. For example, if you pass 10 KB
of text to the SWlttsSpeak() function, your callback may receive
about 1000 seconds of audio samples. That is 8 MB of data if you
chose to receive 8-bit -law samples and 16 MB of data if you chose to
receive 16-bit linear samples. This amount of text may require more
buffering than you want to allow for, especially in a scenario with
multiple TTS ports.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter X/240

A common technique to avoid a buffering load is to call SWlttsPause(
) when the audio buffer exceeds some application defined buffer size
limit (commonly referred to as a “high watermark™), and then call
SWlttsResume() when the audio buffer falls below some application
defined buffer size limit (commonly referred to as a “low
watermark”).

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/241

SWittsClosePort()

Mode
Asynchronous
Purpose
Closes a T'TS port, freeing all resources and closing all
communication with the TTS engine instance.
SWittsResult SWIAPI SWlttsClosePort (
SWittsPort ttsPort
);
Parameters
ttsPort Port handle returned by
SWIttsOpenPortEx().
After closing, SWlttsClosePort() sends a SWltts_cbPortClosed
message to the callback upon successful closing of the port. Once a
port is closed, you cannot pass that port handle to any SWltts
function.
See also
SWIttsOpenPortEx()
RealSpeak Telecom SDK V4.0 December 2005

ScanSoft Proprietary
Programmer's Guide Chapter X/242

SWittsDeleteDictionaryEntry()

Mode
Synchronous
Purpose
Deletes a list of dictionary entries from a dictionary.
SWilttsResult SWIAPI SWlttsDeleteDictionaryEntry (
SWittsPort ttsPort,
const char* dictionaryType,
const char* charset,
SSFT_U32 numEntries,
SWittsDictionaryEntry* entries
)
Notes
Not currently supported, always returns SWltts_ UNSUPPORTED.
Use SWlttsDictionaryLoad() and SWlttsDictionaryFree() instead.
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide

Chapter X/243

SWilttsDictionaryActivate()

Mode
Synchronous
Purpose
Activate a dictionary for subsequent SWlttsSpeak() requests.
SWittsResult SWIAPI SWlttsDictionaryActivate (
SWittsPort ttsPort,
const SWlttsDictionaryData* dictionary,
SSFT _U32 priority
)
Parameters
ttsPort Porthandle returned by SWlttsOpenPortEx()
dictionary Object containing the URI and fetch parameters, ot a
string
ptiotity Priority to assign to this dictionary compared to other
active dictionaries. Values: Integers 1-2"31. Lowest
priority: 1.

See SWlttsDictionaryLoad() for the specification of the
SWilttsDictionaryData data structure.

Applications must use SWlttsDictionaryLoad() to load a dictionary
before activating it.

Activating the dictionary never triggers a reload of the dictionary. To
refresh a loaded dictionary that may be changed, call
SWittsDictionaryFree() followed by SWlttsDictionarylLoad(), and
then activate the dictionary. See “SWlttsDictionaryLoad()” for more
information.

If you want dictionaries to be active for a speak request, load and
activate them before calling SWlttsSpeak(). (SWlttsSpeak() does not
require any activated dictionaries.) Once activated, dictionaries are
active until they are explicitly deactivated. More than one dictionary
can be activated at any given time. When you are finished using all
dictionaries, call SWlttsDictionariesDeactivate() and then
SWittsDictionaryFree() to clean up the resources.

The dictionary priority is a unique integer ranking the priority of this
dictionary compared to all other activated dictionaties of the same
language and type. During speak requests, the engine performs a
lookup in the dictionary of the appropriate type with the highest
priority. If the lookup fails, it tries the dictionary of the appropriate
type with the next highest priority, until there are no more dictionaries
of that type to try.

SWilttsDictionaryActivate() may return the following error codes:

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter X/244

SWiltts DICTIONARY_ACTIVE The dictionary is already activated

SWitts DICTIONARY_NOT The dictionary is not loaded
LOADED
SWitts_DICTIONARY_PRIORITY No duplicate priorities are
_ATLREADY_EXISTS allowed in dictionaties of the
same type and language
SWitts INVALID PARAMETER The ttsPort or dictionary
parameter is NULL or invalid
SWiltts. MUST _BE_IDLE A speak operation is active on
this port
See also
“SWittsDictionariesDeactivate()”
“SWlttsDictionaryFree()”
“SWilttsDictionaryLoad()”
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter X/245

SWttsDictionariesDeactivate()
Mode

Synchronous

Purpose

Deactivates all activated dictionaries for subsequent speak requests.

SWittsResult SWIAPI SWlttsDictionariesDeactivate (

SWittsPort ttsPort
)s
Parameters
ttsPort Port handle returned by SWlttsOpenPortEx().

When you are finished using a dictionary, call SWlttsDictionaryFree()
to clean up the resources used by the dictionary data.

SWittsDictionariesDeactivate() does not deactivate the default
dictionaries that are configured for the Realspeak engine.

Active dictionaries remain active until they are explicitly deactivated
by SWlttsDictionariesDeactivate(). They are not automatically
deactivated after each speak request. SWlttsDictionariesDeactivate()
deactivates all active dictionaries. There is no way to deactivate
individual dictionaries. To deactivate only some of the currently active
dictionaries, use this function to deactivate all dictionaries, then re-
activate the desired dictionaries with SWlttsDictionaryActivate().

SWittsDictionariesDeActivate() may return the following error
codes:

SWitts_INVALID_PARAMETER The ttsPort parameter is NULL or

invalid
SWitts. MUST BE. IDLE A speak operation is active on this
port
See also

“SWilttsDictionaryActivate()”

“SWittsDictionaryFree()”

“SWlttsDictionaryLoad()”

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter X/246

SWttsDictionaryFree()

Mode

Synchronous

Purpose

Signals the engine that the dictionary is no longer needed.

SWittsResult SWIAPI SWlttsDictionaryFree (
SWittsPort ttsPort,
const SWIttsDictionaryData* dictionary

);
Parameters

ttsPort Porthandlereturned by SWIttsOpenPortEx().
dictionary Object containing the URI and fetch parameters, or a
string;

When you are finished using a dictionary, call SWlttsDictionaryFree()
to clean up the resources used by the dictionary data.

SWittsDictionaryFree() cannot be used to free the default
dictionaries that are configured for the RealSpeak engine.

SWittsDictionaryFree() may return the following error codes:

SWitts DICTIONARY_ACTIVE Dictionary cannot be freed until
deactivated.

SWitts. DICTIONARY_NOT _ Dictionary is not loaded

LOADED

SWitts_INVALID_PARAMETER The ttsPort or dictionary parameter
is NULL or invalid.

SWitts MUST BE IDLE A speak operation is active on this
port.

See also

“SWlttsDictionaryActivate()”
“SWilttsDictionariesDeactivate()”
“SWilttsDictionaryLoad()”

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/247

SWittsDictionaryl.oad()

Mode

Synchronous

Purpose

Load a complete dictionary from a URI or string to prepare it for
future activation.

SWittsResult SWIAPI SWlttsDictionarylLoad (

SWittsPort ttsPort,
constSWlttsDictionaryData* dictionary
)
Parameters
ttsPort Port handle returned by SWittsOpenPortEx()
dictionary Object containing the URI and fetch parameters, or a
string

A dictionary must be loaded before it can be activated. If you want the
engine to apply dictionaries to text passed in the SWlttsSpeak() and
SWittsSpeakEx() functions, you must load and activate them before
calling SWlttsSpeak() or SWlttsSpeakEx().

SWilttsDictionaryLoad() blocks until dictionary loading and parsing is
complete.

Structures

The SWIttsDictionaryData structure is defined as follows:

typedef struct SWlttsDictionaryData {

SSFT_U32 version;

const char* uri;

const unsignedchar* data;
SSFT_U32 lengthBytes;
const char* contentType;
const VXIMap* fetchProperties
VXIMap* fetchCookie]ar;

} SWlttsDictionaryData;

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/248

Structure members:

version Use the constant SWItts. CURRENT_VERSION,
defined in SWltts.h.

uri URLI to the dictionary content; contentType may be
NULL. Pass NULL when daza is non-NULL. The
URI may be one of the following:

(RealSpeak Telecom only) HTTP/1.1 web
server access, where the URL is fetched by
the Realspeak server:

http: //mysetver/mydict. xml

* Simple file access. For RealSpeak
Telecom, the file is resolved on the
Realspeak server. for example:
file: /users/mydict.xml
/usets/mydictxml

data In-memory dictionaty content; contentType
must be non-NULL. Pass NULL when #77 is
non-NULL

length Bytes Length of the in-memory dictionary content in
bytes. Pass 0 when #7i is non-NULL

content Type MIME content type to identify the dictionary
format. One of the following;

* NULL: only valid when type is “uri”.
Automatically determines the content type
from the URL. For http: URIs, the MIME
content type returned by the web server is
processed using the rules that follow. For
file: URIs, files with a .xml extension are
treated as Scansoft dictionaries, otherwise
an error results

* application/octet-stream: assume a
RealSpeak dictionary (this is the default
MIME content type returned by web
servers for unknown data types)

* application/edct-bin-dictionary: RealSpeak
binary format dictionary

* application/edct-text-dictionary: RealSpeak
text format dictionary

* text/xml: assume a RealSpeak text
format dictionary for backward
compatibility with Speechify (this
permits migrating the dictionary in-
place without changing C code)
application/x-swi-dictionary: assume a
RealSpeak text format dictionary for
backward compatibility with Speechify
(this permits migrating the dictionary in-
place without changing C code)

Other: a
SWitts INVALID_MEDIATYPE error
is returned

fetchProperties (RealSpeak Telecom only) Optional

VXIMap to control Internet fetch operations

(particulatly the base URI and fetch timeouts).

May be NULL to use defaults. These settings

apply to the fetch of the dictionary when uri is

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/249

non-NULL.

fetchCookieJar (RealSpeak Telecom only) Optional
VXIMap to provide session or end-user-
specific cookies for Internet fetch operations,
modified to return the updated cookie state on
success. May be NULL to disable cookies
(web setrver cookies ate refused).

If an application asks SWlttsDictionaryload() to load a dictionary
that is already loaded, Realspeak returns the non-fatal error code
SWitts_ DICTIONARY_ LOADED. To refresh Realspeak’s copy of
a dictionary that has been updated or changed elsewhere, call
SWilttsDictionaryFree() then SWlttsDictionaryLoad() to force

Realspeak to reload the dictionary.

SWittsDictionaryLoad() may return the following error codes:

SWitts DICTIONARY_LOADED
SWitts_ DICTIONARY_PARSE,_
ERROR

SWitts INVALID_MEDIATYPE

SWitts_INVALID_PARAMETER

SWitts MUST_BE_IDLE

SWitts_ UNKNOWN_CHARSET

SWitts URL_FETCH_ERROR

SWitts_URI_NOT_FOUND

SWitts URI_TIMEOUT

Dictionary is already loaded.
Any error duting dictionary
parsing,

Unsupported MIME content
type for the dictionary
format.

The ttsPott or dictionary
parameter is NULL or
invalid.

A speak operation is active on
this port

Character set for the
dictionary is invalid or
unsupported

Any error during URI access
other than SWltts_
URI_NOT_FOUND or
SWitts_URI_ TIMEOUT
URI was not found (file does
not exist or the web server
does not have a matching

URD).
Timeout during web server
URI access

RealSpeak Telecom SDK V4.0 December 2005
Programmer's Guide

ScanSoft Proprietary
Chapter X/250

See also

“SWilttsDictionaryActivate()”
“SWlttsDictionariesDeactivate()”
“SWlttsDictionaryFree()”

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/251

SWttsGetDictionaryKeys()

Mode
Synchronous
Purpose
Enumerates dictionary keys from the specified dictionary.
SWittsResult SWIAPI SWittsGetDictionaryKeys(
SWittsPort ttsPort,
const char* dictionaryType,
SWittsDictionaryPosition* startingPosition,
SSFT_U32* numkeys,
SWittsDictionaryEntry** keys,
const char* reserved
);
Notes
Not currently supported, always returns SWItts_ UNSUPPORTED.
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter X/252

SWttsGetParameter()

Mode

Synchronous

Purpose

Retrieves the value of a parameter from the server.

Parameters

ttsPort
name
value

SWittsResult SWIAPI SWlttsGetParameter (

SWittsPort
const char*
char*

);

ttsPort,
name,
value

Theporthandle returned by SWttsOpenPortEx().
The name of the parameter to rettieve.

Takes a preallocated butffer of size

SWITTS_MAXVAL,_SIZE.

The following table describes the parameters that can be retrieved.

Certain parameters are read-only.

Name Possible values Read | Description
-only
tts.audio.packetsize even number 64- | no Maximum size of the audio
102400 packets, in bytes, that the SWltts
API sends to the user supplied
callback function. (All packets will
be this size except the last packet,
which may be smaller.)
tts.audio.rate 33-300 no Port-specific speaking rate of the
synthesized text as a petcentage of the
default rate.
tts.audio.volume 0-100 (see no Port-specific volume of synthesized
description for speech as a percentage of the default
caveat.) volume: 100 means maximum possible
without distortion and 0 means silence.
Values greater than 100 are permitted,
but output might have distortion.
tts.audioformat.encoding ulaw, alaw, linear | yes Encoding method for audio generated
during synthesis. This value can be set
via the mimetype.
tts.audioformat.mimetype audio/basic No The audio format:
audio/x-alaw-basic
audio/L16;rate=800
0
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide

Chapter X/253

audio/L16;rate=110
00

audio/L16;rate=160
00

audio/L16;rate=2
2000

audio/basic cotresponds to 8
kHz, 8-bit -law;

* audio/x-alaw-basic corresponds to

8 kHz, 8-bit A-law;

* audio/L.16;rate=8000
corresponds to 8 kHz, 16-bit
linear;

* audio/L16;rate=11000

corresponds to 11 kHz, 16-bit
linear;

* audio/L16;rate=16000
corresponds to 16 kHz, 16-bit
linear.

* audio/L16;rate=22000
corresponds to 22 kHz, 16-bit
linear;

All other values generate a
SWiltts_INVALID_PARAMETER
return code.

In all cases, audio data is returned in
network byte order.

tts.audioformat.samplerate

8000, 11000,
16000, 22000

yes

Audio sampling rate in Hz.
'This value can be set via the
mimetype

tts.audioformat..width

8,16

yes

Size of individual audio sample in
bits

This value can be set via the
mimetype

tts.client.version

Current
RealSpeak SW1tts
API library
version number

yes

The returned value is a string of the
form major.minor.maintenance. For
example, 2.0.0 or 2.0.1.

This parameter reflects the SWltts
API library version, and can be
retrieved after SWlttsInit() is
called but before
SWIttsOpenPortEx() is called.
Use SWITTS_INVALID_PORT
for the first argument to
SWittsGetParameter().

tts.engine.id

positive integer

yes

RealSpeak engine logical channel
ID that is handling speak requests
for this SWltts API library port.
The RealSpeak engine logs
diagnostics, errors, and events to
its diagnostic and error log using
this logical channel 1D, so
including this logical channel ID
in application logs can help in
cross-referencing application and
RealSpeak engine logs.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter X/254

tts.engine.version

Current Realspeak
engine version
number

yes

The returned value is a string of
the form
major.minor.maintenance. For
example, 2.0.0 or 2.0.1.

tts.marks.phoneme

true, false

no

controls whether phoneme marks
are reported to the client

tts.mark.word

true, false

no

controls whether wordmarks are
reported to the client

tts.network.timeout

positive integer

no

(RealSpeak Telecom client/setver
mode only) Timeout, in seconds,
for the connection to the
RealSpeak server. If a send
operation to the setver fails to
complete within this duration, or
if a heartbeat is not received from
a server in this duration, the server
connection is presumed to be
dead and the connection is

dropped.

tts.product.name

"RealSpeak Host",
"RealSpeak Solo"

yes

"RealSpeak Host" for the main
RealSpeak Host product;
"RealSpeak Solo" for the
RealSpeak Solo product.

RealSpeak Telecom SDK V4.0 December 2005

Programmer's Guide

ScanSoft Proprietary
Chapter X/255

tts.server.licensingMode default, explicit yes Modes for controlling license

allocation to a Realspeak pott object

* default: automatically
when
SWittsOpenPortEx() is
called

* explicit: as decided by
the platform developer.
Use
SWittsResourceAllocate
() and
SWittsResourceFree()
to control allocation and
de-allocation of licenses

tts.voice.gender male, female yes synthesis voice gender
tts.voice.language server yes synthesis language
tts.voice.name server yes unique name identifying the voice
tts.voice.version current Realspeak | yes The returned value is a string of
voice version the form
number major.minor.maintenance. For
example, 2.0.0.
See also

“SWlttsSetParameter()”

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/256

SWilttsInit()

Mode

Synchronous

Purpose

Initializes the SWItts API library so that it is ready to open ports.

SWilttsResult SWIAPI SWittsInit (
SWttsCallback* callback,
SWttsCallback* userData

);
Parameters

callback A pointer to a callback function that may receive
SWtts_cbLogError and/or SWltts_cbDiagnostic
messages during the SWlttsInit() call. If this callback
is called, the ttsPort parameter is —1. This may be the
same callback that is passed to SWIttsOpenPortEx(
) or SWlttsTerm().

userData User information passed back to callback. It is not
interpreted or modified in any way by the SWltts
API library

Notes

This must be the first API function called, and it should only be
called once per process, not once per call to SWittsOpenPortEx().

SWittsInit() may return the following error codes:

SWitts ATREADY_INITIALIZED The SWltts API library is
already initialized (from a prior
SWittsInit() call).

See also

“SWlttsOpenPortEx()”
“SWlttsTerm()”

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/257

SWittsLookupDictionaryEntry()

Mode

Synchronous

Purpose

Retrieves the translation for the given key from the specified
dictionary.

SWlttsResult SWIAPI SWlttsLookupDictionaryEntry(

SWittsPort ttsPort,

const char* dictionaryType,
const SSFT_U8* key,

const char* charset,
SSFT_U32 keyLengthBytes,
SSFT_U32* numEntries,
SWittsDictionaryEntry** entries

)

Notes

Not currently supported, always returns SWltts_ UNSUPPORTED.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/258

SWttsOpenPort()

Mode

Synchronous

Purpose

This function opens and connects to a RealSpeak engine port. Call
this function after SWlttsInit().

RealSpeak Solo:
SWlttsOpenPort(
SWittsPort* ttsPort,
const char* parameters,
SWttsCallback* callback,
void* userData
)s

RealSpeak Telecom:
SWlttsResult SWIAPI SWIttsOpenPort(SWlttsPort *ttsPort,
const char* hostAddr,
SSFT_U16 connectionPort,
SWttsCallback* callback,
void* userData
)s

Notes

SWlttsOpenPort() is merely a Speechify 2.1 and Speechify Solo 1.0
compatibility layer on top of SWlttsOpenPortEx(). See
SWlttsOpenPortEx() for parameter and return code details.

For RealSpeak Solo, SWIttsOpenPort() is equivalent to calling:
SWlttsOpenPortEx(ttsPort, parameters, NULL, callback, userData);
For RealSpeak Telecom, SWIttsOpenPort() is equivalent to:
char parameters[1024];

sprintf(parameters, “hostname=%s;hostport=%u”, hostAddr,

connectionPort);
SWittsOpenPortEx(ttsPort, parameters, NULL, callback, userdata);

See also

SWIttsOpenPortEx()
SWilttsClosePort()
SWttsInit()

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/259

SWttsOpenPortEx()

Mode
Synchronous
Purpose
This function opens and connects to a Realspeak engine port. Call
this function after SWlttsInit().
SWittsOpenPortEx(
SWittsPort* ttsPort,
const char* parameters,
SWttsResources* resources,
SWttsCallback* callback,
void* userdata
);
Parameters
ttsPort Addressofa location to place the new port’s handle
parametets Key/value parameter list in
<keyl>=<valuel>;<key2>=<value2>[...] form. If
there is no engine matching the specified parameters, or
if the set of parameters does not uniquely identify an
engine, the call returns
SWitts_INVALID_PARAMETER.
Use these keys and values in the parameters field to
specify a voice:
e language, such as “American English”
e name, such as “Jennifer”
e sample_rate, such as “8000”
e (RealSpeak Solo only) quality, currently ignored
e (RealSpeak Solo only) reduction_type, a voice
reduction type as listed in the RealSpeak
language documentation
e (RealSpeak Telecom only) hostname, a
RealSpeak server host name such as “localhost”
e (RealSpeak Telecom only) hostport, a
RealSpeak setver host TCP/IP port numbet
such as “6666”
resources Reserved for future use, pass NULL
callback A pointer to a callback function that receives audio buffers and
other notifications when the server sends data to the client. If an
error occurs during the call to SWlttsOpenPortEx(), the callback
is called with a SWltts_cbLogError message and a ttsPort of —1.
userData User information passed back to callback

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary

Chapter X/260

Notes

For compatibility with Speechify, RealSpeak Telecom applies special
mapping rules if hostname and hostport are specified without
specifying a language or name. These mapping rules are loaded from
config/swittsclient.cfg when SWlttsInit() is called, and is used to
translate a Speechify port number to a RealSpeak port number,
language name, voice name, and sample rate. This is required because
a Speechify server instance (hostname and hostport pair) could only
support one voice and sample rate, so that information was sufficient
to also identify the desired language, voice, and sample rate. However,
a RealSpeak server instance can support any number of languages,
voices, and sample rates simultaneously. If you are using the default
Speechify and RealSpeak server port numbers, then the default
mapping rules should be sufficient. If you use custom server port
numbers, however, then you should customize swittsclient.cfg to
define rules for mapping those port numbers. See swittsclient.cfg for
details.

SWlttsOpenPortEx() may return the following error codes:

SWitts_INVALID_PARAMETER One of the parameters to the function

was invalid.

SWitts-NO_LICENSE There are no purchased licenses

available

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter X/261

Example

Below is an example of how you would use this API function for
RealSpeak Solo:

SWittsPort port;

SWittsOpenPortEx(&port,

"language=American English;name=]ennifer;sample_rate=8000",
callback, NULL);

Below is an example of how you would use this API function for
RealSpeak Telecom:

SWittsPort port;

SWittsOpenPortEx(&port,
"hostname=localhost;hostport=6666;language=American
English;name=Jennifer;sample_rate=8000",

callback, NULL);

See also

“SWlttsClosePort()”
“SWittsInit()

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/262

SWilttsPause()

Mode

Asynchronous

Purpose

(RealSpeak Solo only) Pauses the current active speak request.

SWittsResult SWIAPI SWlttsPause (
SWittsPort ttsPort

);
Parameters

ttsPort The port handle returned by SWlttsOpenPortEx().
b)

Notes

This pauses the delivery of audio, marks, and other events for the
current active speak request. To resume the request, call
SWittsResume(). Note that since RealSpeak usually delivers audio
faster then real-time, this call is not sufficient to fully implement an
application level pause operation: to fully implement a pause for the
end user, the application needs to pause the audio playback device,
then call this API function to prevent overflowing the application
level audio buffer.

If there is no SWlttsSpeak() function in progress, or if a currently
active speak request is already paused due to a previous call to
SWilttsPause(), this function returns an error.

See also

SWilttsSpeak()
SWittsSpeakEx()
SWittsResume()

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/263

SWlttsPing()

Mode

Asynchronous

Purpose

Performs a basic test of the TTS engine instance responsiveness.

SWittsResult SWIAPI SWlttsPing (
SWilttsPort ttsPort

);
Parameters

ttsPort The port handle returned by SWIttsOpenPort()

This verifies that the instance of the TTS engine instance for this port
is alive and accepting requests.

A return code of SWltts_SUCCESS means that the ping has been
successfully sent to the TTS port. When the TTS engine instance
replies, the SWltts API library calls the callback for this port with a
status of SWItts_cbPing. If this function returns an error code, shut
down the port with the SWlttsClosePort() call. The amount of time
you should wait for the SWltts_cbPing message in your callback
varies depending on the load on your system; a good rule of thumb is
to wait about five seconds for a ping reply before assuming the port is

dead.

See also

SWittsClosePort()
SWlttsOpenPort()

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/264

SWittsResetDictionary()

Mode
Synchronous
Purpose
Removes all entries from the specified dictionary.
SWittsResult SWIAPI SWittsResetUserDictionary(
SWittsPort ttsPort,
const char* dictionaryType
);
Notes
Not currently supported, always returns SWItts_ UNSUPPORTED.
RealSpeak Telecom SDK V4.0 December 2005

ScanSoft Proprietary
Programmer's Guide Chapter X/265

SWittsResourceAllocate()

Purpose

(RealSpeak Telecom only) Explicitly assign a license for a specified

Realspeak port.
SWittsResult SWlttsResource Allocate(
SWittsPort ttsPort,
const SSFT_TCHAR* feature,
void* reserved
)
Parameters
ttsPort Theporthandlereturned by SWlttsOpenPortEx().
feature Use the constant SWltts_ LICENSE_SPEAK defined
in SWItts.h for licensing functionality.
reserved This parameter is reserved for future use. Pass in NULL
Notes

The tts.servet.licensingMode configuration parameter must be set to
"explicit" for SWittsResourceAllocate() to work. You can use
SWittsGetParameter() to retrieve the value of
tts.server.licensingMode and find out whether you need to call this
function (and explicitly allocate and free licenses) or not. If the
licensing mode is set to "default," the SWIttsOpenPortEx() function
implicitly allocates a license for the application.

SWittsResourceAllocate() may return the following error codes:

SWitts_INVALID PARAMETER Aninvalid feature parameter was specified
SWiltts_ LICENSE_ALLOCATED A license has already been allocated for this

pott..

SWitts_ MUST_BE_IDLE A speak operation is active

SWitts_ NO_LICENSE There are no purchased licenses available
SWitts_UNSUPPORTED The tts.serverlicensingMode parameter is

not set to explicit.

See also

“SWlttsResourceFree()”

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/266

SWittsResourceFree()

Purpose

(RealSpeak Telecom only) Explicitly free the user license for the
specified Realspeak port.

SWittsResult SWlttsResourceFree(

SWittsPort ttsPort,
const SSFT_TCHAR¥* feature,
void* reserved
);
Parameters
ttsPort Theporthandlereturnedby SWittsOpenPortEx().
feature Use SWitts_TICENSE, SPEAK to free a license
resetved This parameter is reserved for future use. Pass in
NULL.
Notes

The tts.servet.licensingMode configuration parameter must be set to
explicit for SWIttsResourceFree() to work.

Note that SWlttsClosePort() also frees the license for a port while
freeing all other resources for that port.

SWittsResourceFree() may return the following error codes:

SWitts_INVALID_PARAMETER An invalid feature parameter was specified

SWitts_ ILICENSE_FREED A license has already been freed for this port.
SWitts MUST _BE,_IDLE A speak operation is active.
SWitts NO_LICENSE There are no purchased licenses available
SWitts_ UNSUPPORTED The tts.serverlicensingMode parameter is not
set to explicit
See also
“SWlttsClosePort()

“SWilttsResourceAllocate()”

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/267

SWilttsResume()

Mode
Asynchronous
Purpose
(RealSpeak Solo only) Resumes a paused active speak request.
SWittsResult SWIAPI SWlttsResume (
SWilttsPort ttsPort
)
Parameters
ttsPort The port handle returned by SWlttsOpenPortEx().
Notes
This resumes the delivery of audio, marks, and other events for a
paused speak request.
If there is no SWlttsSpeak() function in progress, or if a currently
active speak request is not paused, this function returns an error.
See also
SWilttsSpeak()
SWittsSpeakEx()
SWittsPause()
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter X/268

SWittsSetParameter()

Mode

Synchronous

Purpose

Sends a parameter to the TTS engine instance.

SWilttsResult SWIAPI SWlttsSetParameter(

SWilttsPort
const char*
const char*

);

ttsPort
name

value

Notes

ttsPort,
name,

value

The port handle returned by SWittsOpenPortEx().
A parameter name represented as a NULL-terminated

US-ASCII string

A parameter value represented as a NULL-terminated

US-ASCII string

If SWlttsSetParameter() returns an error, the parameter is not
changed. Setting a parameter is not a global operation, it only affects
the TTS port passed to the call.

The following table describes the parameters that can be set. All
parameters have a default value from the server XML configuration
file. SWlttsGetParameter() lists the read-only parameters. If you try to
set a read-only parameter, SWlttsSetParameter() returns

SWitts_ READ_ONLY.

Name

Possible

values

Description

tts.audio.packetsize

Even number

Maximum size of the audio

(See description
for caveat.)

64-102400 packets, in bytes, that the
Recommended | SWltts API sends to the user
values: supplied callback function. (All
1024,2048,0r packets are this size except the
4096 last packet, which may be
smaller.)
tts.audio.rate 33-300 Port-specific speaking rate of the
synthesized text as a percentage of
the default rate.
tts.audio.volume 0-100 Port-specific volume of synthesized

speech as a percentage of the
default volume: 100 means
maximum possible without
distortion and 0 means silence.
Values greater than 100 are
permitted, but output might have

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter X/269

distortion.

tts.audioformat.mim

etype

audio/basic

audio/x-alaw-
basic
audio/L.16;rate=8
000
audio/L16;rate=1
1000
audio/L16;rate=1
6000
audio/L16;rate=2
2000

The audio format of the server
- audio/basic corresponds to 8
kHz, 8-bit p-law

- audio/x-alaw-basic
corresponds to 8 kHz, 8-bit A-
law

- audio/T.16;rate=8000
corresponds to 8 kHz, 16-bit
linear

- audio/L16;rate=11000
corresponds to 11 kHz, 16-bit
linear

- audio/L16;rate=16000
corresponds to 16 kHz, 16-bit
linear

- audio/1.16;rate=22000
corresponds to 22 kHz, 16-bit
linear

All other values generate a
SWitts INVALID_PARAM
return code.

In all cases, audio data is returned
in network byte order.

tts.marks.phoneme

true, false

Controls whether phoneme
marks are reported to the

application.
tts.marks.word true, false Controls whether wordmarks are
reported to the application.
tts.network.timeout | positive integer | (RealSpeak Telecom

client/server mode only)
Timeout, in seconds, for the
connection to the RealSpeak
server. If a send operation to
the server fails to complete
within this duration, ot if a
heartbeat is not received from
a server in this duration, the
server connection is presumed
to be dead and the connection

is dropped.

tts.reset

none

Command which causes all
parameters controllable via
SWittsSetParameter() to revert to

their default values; the value is
ignored.

tts.audioformat.mimetype values may be switched between
audio/basic, audio/x-alaw-basic, and audio/L.16;rate=8000 if the
server has been instantiated with the 8 kHz voice database. If the
server is instantiated with the 1 6 kHz voice database, this parameter

has the read-only value of audio/T.16:rate=16000

In a client/server environment, the default rate and volume is set in
RealSpeak Server configuration file (ttsserver.xml, see “Configuration
Files” section in the “User Configuration” chapter). If the rate or

RealSpeak Telecom SDK V4.0

Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter X/270

volume is set through this API call, the new value overrides those
defaults. Similarly, if the rate or volume is set through markup in the
input text, those values override both the RealSpeak Server default
and the value set via the API for that (and only that) speak request.

See also

“SWilttsGetParameter()”

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/271

SWilttsSpeak()

Mode
Asynchronous
Purpose
Sends a text string to be synthesized. Call this function for every text
string to synthesize.
SWlttsResultSWIAPI SWttsSpeak(
SWittsPort ttsPort,
const SSFT_U8* text,
SSFT_U32 lengthBytes,
const char* content_type
)
Parameters
ttsPort The port handle returned by SWIttsOpenPortEx()
text The text to be synthesized: an array of bytes representing a
string in a given character set.
lengthBytes The length of the text atray in bytes; note that this means
any NULL in the text is treated as just another character.
content_type Description of the input text according to the MIME
standard (per RFC-2045 Sec. 5.1 and RFC 2046).
Default (if set to NULL): text/plain;charset=iso-8859-1.
Notes

See SWlttsSpeakEx() to do either of these tasks:

e Have Realspeak fetch the document to speak from a web
server (instead of the text being in memory)

e (RealSpeak Telecom only) Specify internet fetch controls for
<audio> elements within W3C SSML documents

The content types that are supported are text/* and
application/ssml+xml (or application/synthesis+ssml).

Any subtype may be used with "text". However, only the subtype
"xml" is treated specially: the text is assumed to be in W3C SSML and
if it is not, an error is returned. All other subtypes ate treated as
"plain".

(RealSpeak Telecom only) The "application/ssml+xml" content type
is used to indicate W3C SSML content, which is parsed accordingly.
If W3C SSML input is not signaled via the content type parameter, it
is pronounced as plain text.

The only meaningful content_type parameter is "charset,” which is
case-insensitive. (See www.iana.org/ assignments/ character-sets for more

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter X/272

details.) All other parameters are ignored. If "charset" is not specified,
it is assumed to be ISO-8859-1. An example of a valid content type:

e text/plain;charset=iso-8859-1

The supported character sets vary by language:

Character set Languages Notes
UTF-8 All languages
UTF-16 All languages If the byte order mark is missing,
big-endian is assumed
wechat_t All languages “wchar_t" is not a MIME standard.
It indicates that the input is in the
form of the operating system's
native wide character array (i.e.,
wchar_t *). Note that input length
must still be specified in bytes (i.e.,
the number of wide characters in
the input times the number of
bytes per wide character).
ISO-8859-1 Western
languages
US-ASCII (synonym: ASCII) Western
languages
windows-1252 Western
languages
EUC-jp (synonym: EUC) Japanese
Shift-]JIS Japanese
SWilttsSpeak() may return the following error codes:
SWitts_ NO_LICENSE There are no purchased licenses available
See also

“SWttsSpeakEx()”

“SWttsStop()”

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter X/273

SWlttsSpeakEx()

Mode
Asynchronous
Purpose
Sends a text URI or string to be synthesized. Call this function for
every text URI or string to synthesize.
SWittsResult SWIAPI SWittsSpeakEx(
SWittsPort ttsPort,
const SWIttsSpeakData* speakData
);
Parameters
ttsPort The port handle returned by SWttsOpenPortEx().
speakData Object containing the URI and fetch parameters, or a string.
Structures

The SWIttsSpeakData structure is defined as follows:

Typedef struct SWlttsSpeakData {

SSFT_U32 version;

const char* uri;

const SSFT_U8* data;
SSFT_U32 lengthBytes;
const char* contentType;
const VXIMap* fetchProperties;
VXIMap* fetchCookie]ar;
} SWlttsSpeakData;

Structure members:

version Use the constant SWItts CURRENT _VERSION defined
in SWltts.h.
uri URI to the text; conzentType maybe NULL. Pass NULL
when data is non-NULL. The URI may be one of the
following:
* HTTP/1.1 web server access, where the URL is
tetched by the Realspeak server:
http:/ /myserver/mytext.txt
* Simple file access. For RealSpeak Telecom, the file is
resolved on the Realspeak setver. For example:
file: /users/mytext. txt
/users/mytext.txt

data In-memoty text; contentType must be non-NULL. Pass
NULL when #ri is non-NULL.

lengthBytes Length of the in-memoty text in bytes. Pass 0 when #ri is

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/274

non-NULL
contentType ~ MIME content type to identify the text format. One of the
following:

* NULL: only valid when type is "uri".
Automatically determines the content type from
the URL. For http:// URIs, the MIME content
type returned by the web server is processed
using the rules that follow. For file: URISs, files
with a .dct extension are treated as W3C SSML
documents, and files with a .txt extension are
treated as ISO-8859-1 text documents, otherwise
an error results.

* text/*: Subtype xml text is assumed to be in W3C
SSML. If it is not, an error is returned. Other subtypes
are treated as “plain.”

* (RealSpeak Telecom only) application/ssml+xml:
indicates W3C SSML content. If W3C SSML input is
not indicated via contentType, it is pronounced as
plain

* Other: a SWitts_ INVALID _MEDIATYPE etror is
returned

fetchProperties (RealSpeak Telecom only) Optional VXIMap to
control Internet fetch operations (particularly the
base URI and fetch timeouts). May be NULL to use
defaults. These settings apply to the fetch of the top-
level document when #77 is non-NULL, and also to
any fetches for <audio> elements within W3C SSML
documents (whether the W3C SSML document was
fetched by URI or provided in-memory).

tetchCookieJar (RealSpeak Telecom only) Optional VXIMap to
provide session or end-uset-specific cookies for
Internet fetch operations, modified to return the
updated cookie state on success. May be NULL to
disable cookies (web server cookies are refused).

The only meaningful contentType parameter is "charset," which is
case-insensitive. (See www.iana.org/ assignments/ character-sets for more
details.) All other parameters are ignored. If "charset" is not specified,
it is assumed to be ISO-8859-1. An example of a valid contentType:

e text/plain;charset=iso-8859-1

The supported character sets vary by language:

Character set Languages Notes

UTF-8 All languages

UTF-16 All languages If the byte order mark is missing,
big-endian is assumed

wechat_t All languages “wchar_t" is not a MIME standard.

It indicates that the input is in the
form of the operating system's
native wide character array (i.e.,
wchar_t *). Note that input length
must still be specified in bytes (i.e.,
the number of wide characters in
the input times the number of

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/275

bytes per wide character).
ISO-8859-1 Western
languages
US-ASCII (synonym: ASCII) Western
languages
windows-1252 Western
languages
EUC-jp (synonym: EUC) Japanese
Shift-]JIS Japanese
SWilttsSpeakEx() may return the following error codes:
SWitts_ INVALID MEDIATYPE Unsupported MIME content type for
the speak data.
SWiltts_INVALID_PARAMETER The ttsPort or speakData parameter is
NULL or invalid.
SWitts_ MUST_BE_IDLE A speak operation is active.
SWitts_ NO_LICENSE There are no purchased licenses
available.
SWitts_ UNKNOWN_CHARSET Character set for speakData is invalid or
unsupported.
SWitts_URI_FETCH_ERROR Any error during URI access other than
SWitts_ URI_NOT_FOUND and
SWitts_ URI_TIMEOUT.
SWitts_ URI_NOT_FOUND URI was not found (file does not exist or
the web server does not have a matching
URID).
SWitts_ URI_TIMEOUT Timeout during web server URI access.
See also

SWttsStop()

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter X/276

SWlttsStop()

Mode
Asynchronous

Purpose
Interrupts a call to SWlttsSpeak().
SWilttsResult SWIAPI SWlttsStop (
SWittsPort ttsPort
)

Parameters
ttsPort The port handle returned by SWIttsOpenPortEx().

<)

Notes
When the currently active speak request is completely stopped and
the port is idle, the SW1tts library calls the port's callback with a status
of SWltts_cbStopped. The callback is called with SWltts_cbStopped
only if the SWlttsStop() function returns with a SWltts_SUCCESS
result.
If there is no SWlttsSpeak() function in progress, or if a currently
active speak request is already stopping due to a previous call to
SWittsStop(), this function returns an error.

See also
SWilttsSpeak()
SWittsSpeakEx()

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter X/277

SWilttsTerm()

Mode
Synchronous
Purpose
Closes all ports, terminates their respective threads, shuts down the
API library, and cleans up memory usage.
SWlttsResult SWIAPI SWlttsTerm(
SWttsCallback* callback,
void* userData
)
Parameters
callback A pointer to a callback function that may receive
SWiltts_cbError, SWltts_cblLogError, and/or
SWiltts_cbDiagnostic messages during the SWlttsTerm(
) call.
userData User information passed back to callback.
Notes
If SWIttsTerm() closes one or more open TTS ports, you receive
SWiltts_cbPortClosed messages in their respective callbacks.
See also
SWittsInit()
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter X/278

RealSpeak Telecom
Sottware Development Kit

Chapter XI

Speechity Email Pre-Processor

Programmer’s Guide

v

Speechify Email Pre-processor

Chapter Xl

Speechify Email Pre-Processor

Introduction

Features

Speechify™ is an older Text-To-Speech (TTS) system that was
combined with RealSpeak Solo 1.0 and RealSpeak Telecom 3.5 to
create the best-of-breed RealSpeak product you are using now. This
chapter is written for Speechify 2.1 and 3.0 application developers
who previously used the email pre-processor library of those
Speechify products, and wish to continue to use this same email
preprocessing solution with the converged RealSpeak products.

If you have not previously used the Speechify 2.1 or 3.0 e-mail pre-
processor, however, you should not use this email pre-processor.
Instead, you should use the email pre-processor that is built-in to the
RealSpeak product. See the RealSpeak User’s Guides for more
information.

e Programming environment.

This paragraph gives an overview of features, how to use the e-mail
pre-processor API, and information about the e-mail substitution
dictionary, used to specify and customize text substitutions. For a
detailed explanation of the API functions, see “API Reference”.

The Speechify E-mail Pre-processor is provided as a dynamic linked
library (.dll) on NT and a static library (.a) on UNIX. It has the
following features:

e Support for standard format e-mail.
e A powerful e-mail substitution dictionary.
e Thread-safe API functions.

The Speechify E-mail Pre-processor only processes plain text e-mail
messages. It does not process e-mail messages that are in HTML
format or are encoded (e.g., base64). The pre-processor does provide
the facility to support partially processed email messages, as well as
MIME format. This allows the pre-processor to process e-mail
messages that have been pre-filtered for HTML tags (or any other
text format that the application chooses to handle). A full description
of this is provided in chapter “Functionality of the E-mail Pre-
processor”

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter XI1/280

v
Chapter Xl

Speechify Email Pre-processor

The pre-processor has a substitution dictionary that allows the user to
specify the way strings are spoken by RealSpeak. Entries in the
dictionary tell the pre-processor to substitute certain pieces of text
with other text. For example, you may want to replace “BTW” with
“by the way”. Dictionary entries may apply to the whole message or to
specific sections of the message, depending on the scope that the user
has specified. A full description of the dictionary is provided in
chapter “Using the E-mail Substitution Dictionary”.

Order of API calls

There ate just three API functions in the e-mail pre-processor. You
must call them in this order.

e SWlemaillnit() initializes the e-mail preprocessor library
which includes loading the substitution dictionary and
loading it into memory

e SWlemailProcess() processes a single e-mail message in
the form of a null terminated text string.

e SWlemailTerm() frees resources needed by the library.

Pseudo-code for an offline e-mail pre-processor may look like this:

SWlemaillnit()
while (more messages to process)
SWlemailProcess(message 7)

Save(message #)
SWlemailTerm()

Pseudo-code for an application that processes and speaks e-mail at
runtime may look like this:

SWlemaillnit()

SWlttsInit()

SWlttsOpenPort()

while (more TTS requests to make)
SWlemailProcess ()
SWittsSpeak()

SWittsClosePort()

SWittsTerm()

SWlemailTerm()

NOTE

You only need to call SWlemaillnit() and SWlemailTerm() once per
process, and you need to call SWlemailProcess() once per message.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter XI1/281

v Speechify Email Pre-processor

Chapter Xl

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI1/282

v Speechify Email Pre-processor

Chapter Xl

Functionality of the E-mail
Pre-Processor

This paragraph explains the types of input that the Speechify E-mail
Pre-processor handles, how it processes the messages, and the modes
that the application can take advantage of at run time. There is
mention of MIME (Multipurpose Internet Mail Extensions) format
messages below. A MIME format message is one that conforms to the
Internet standards defined in RFCs 822, 2045 and 2046.
(http://www.ietf.org/tfc.html)

In This Paragraph

e Supported message formats
e Default behavior
e Modes

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI1/283

v

Speechify Email Pre-processor

Chapter Xl

Supported message formats

The Speechify E-mail Pre-processor deals with messages in full
MIME format, or partially processed messages. It only processes
plain text e-mail messages. It does not process e-mail messages that
are in HTML format or that are encoded (e.g., base64), therefore
HTML/XML tags or encoded text should be filtered out of the
message or decoded before a call to SWlemailProcess(). If not,
RealSpeak reads the tags or encoded text. If you preprocess a message
with another application (e.g., to parse or filter HTML tags), and the
output is not in MIME format, then the e-mail preprocessor can still
deal with the message. The only assumption is that there is an empty
line separating the header from the body of the message. Below is an
example of a partially processed e-mail.

From: "Dave Burns" <david.burns@scansoft.com>
To: "Daniel Faulkner" <daniel.faulkner@scansoft.com>
Subject: RE: No con call

Date: Mon, 27 Nov 2000 15:44:58 -0500

This is a partially processed e-mail

If a message is passed into the preprocessor in MIME format, then
each MIME boundary is located, and its content type is identified. If
there are attachments to the message, the listener is notified what the
media type and file name are (e.g., “There is an audio file called
hello.wav attached to the message”). File attachments can only be
identified if the message is passed in MIME format. Below is an
example of a MIME format message with a text file attachment.

From andrew.lowty@scansoft.com Fri Nov 24 04:04:16 2000
Received: from [63.113.17.11] by scansoft.com (3.2) with ESMTP id
MBBE7A428003A4004315F3F71110BB50EO; Fri Nov 24 04:03:52
2000

Received: from vishnu.scansoft.com (mailhost.scansoft.com
[206.234.64.17]) by scansoft.com (8.9.3+Sun/8.9.3) with ESMTP id
HAA21041 for < dan.faulkner@scansoft.com>; Fri, 24 Nov 2000
07:05:59 -0500 (EST) Received: from scansoft.com ([10.6.70.30])
by vishnu.scansoft.com (8.9.3+Sun/8.9.3) with ESMTP id
HAAO00745

for <dan.faulkner@scansoft.com>; Fri, 24 Nov 2000 07:03:50 -0500
(EST) Message-ID: <3A1E5925.11COCC@scansoft.com>

Date: Fri, 24 Nov 2000 07:03:49 -0500

From: Andrew Lowry <andrew.lowry(@scansoft.com>

X-Mailer: Mozilla 4.7 [en] (WinNT; I)

X-Accept-Language: en

MIME-Version: 1.0

To: dan.faulkner@scansoft.com

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter X1/284

v

Speechify Email Pre-processor

Chapter Xl

Subject: here it is!
Content-Type: multipart/mixed;

boundary="D9A5530EC 68939F7E9BE4970"

This is a multi-part message in MIME format.
DI9AS5530EC 68939F7EIBE4970 Content-Type: text/plain;
charset=us-ascii Content-Transfer-Encoding: 7bit

Here is the file you asked for. Drew

DI9AS5530EC 68939F7EIBE4970 Content-Type: text/plain;
charset=us-ascii; name="dan.txt"
Content-Transfer-Encoding: 7bit

Content-Disposition: inline;

filename="dan. txt"

blah blah blah blah blah...

DIYA5530EC 68939F7EIBE4970

Default behavior

Header processing

For either message format, the Speechify E-mail Pre-processor
identifies the message header and message body, and tries to identify
address/signature blocks (although this can be difficult if users employ
arbitrary formatting for their address/ signature blocks).

Discarding header lines

All lines in the header are discarded except the from, date, and subject
lines. Each header line is terminated with a period. The expansions of
the From, Date and Subject lines are specified in the substitution
dictionary. The date in the date line is expanded. The year and time are
discarded. For example:

Input Preprocessed text

Date: Tue, 24 Oct 2000 07:03:49 —0500 Your message arrived on Tuesday,

twenty fourth October

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter XI/285

v Speechify Email Pre-processor

Chapter Xl

Reading From lines

If the From line contains an e-mail address and a real name, the real
name is read:

Input Preprocessed text

From: Dan Faulkner Your message is from Dan Faulkner
dan.faulkner@scansoft.com

Subject line abbreviations

In the subject line, abbreviations like FW and RE can be expanded
using the substitution dictionary, e.g.:

Input Preprocessed text
Subject: RE: Questions from The subject line says the message is a reply
customers about questions from customers

Here “Subject:” was replaced with The subject line says, and “RE:” was
replaced with #he message is a reply about.

When expanding the RE: and FW: strings, note that they frequently
occur multiple times in a single subject line. For this reason, you
should either expand them to something that makes sense when read
more than once, or add multiple occurrences to the substitution
dictionary, and define a single expansion for them, e.g.:

e RE: the message is a reply
e FW: the message was forwarded
e FW:FW: the message was forwarded twice

e RE:FW:FW: this message is a reply to a message that was
forwarded twice.

Body processing

Discarding data

In the message body, UUencoded data and octal data are skipped.
Within the body, an empty line is considered to be a paragraph break,
and if the last line of the paragraph doesn’t end with a period, then a
period is inserted, e.g.:

Original text Pre-processed text
Hi Hi. How are you?
How are you?

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI1/286

v Speechify Email Pre-processor

Chapter Xl

Non-alphanumeric, non-space strings of more than three characters
are deleted if they haven’t been matched and substituted by the e-mail
substitution dictionary. In this example, the lines of dashes have been
deleted, so that the listener does not hear “dash dash dash dash
dash...”:

Original text Pre-processed text

All or some of this message may All or some of this message may be privileged
be privileged information. If you information. If you are not the intended

are not the intended recipient, recipient, please discard this message and any
please discard this message and attachments now

any attachments now

Multiple punctuation marks

Multiple punctuation marks resolve to a single punctuation mark, e.g.:

Original text Pre-processed text
What!ppp2222222?1l! What!

Embedded e-mail messages

The listener is notified of embedded e-mail messages (only the from
line is read from embedded messages). The listener is also notified at
the beginning and end of portions of text that have been indented
with greater than (>), e.g.:

Original text Pre-processed text

>What are you doing on This next section of text is indented.

Thursday? What are you doing this Thursday?

I don’t know yet. That’s the end of the section that was
indented.

I don’t know yet.

These notifications ate specified, and can therefore be customized, in
the e-mail substitution dictionary. (See chapter “Using the E-mail
Substitution Dictionary” for details.)

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI1/287

v Speechify Email Pre-processor

Chapter Xl

Signature processing

The Internet standard for indicating that a signature/address block is
next in the text is the sequence --\n. If this sequence is found in the
message body, the preprocessor assumes that the following text is an
address block, until the next empty line. For example:

tel. +44 0803 123456 http://www.scansoft.com

In addition to this assumption, there is a heuristic process employed
that looks for the following strings at the beginning of a line:

° ph

o tel

o fax

¢ pgr

* www
e mail
e http

e work
e home
e email
e c-mail

If any of these are found as the first alphabetic strings on two
consecutive lines, then until the next empty line, the text is treated as

an address block, e.g.:
Original text Preprocessed text
e R e Telephone, +44 0803 123456.
++++ Tel +44 0803 123456 Fax, +44 0803 654321.
+ Fax +44 0803 654321 www.scansoft.com
+ www.scansoft.com
+
ottt

MIME format

File attachments and media types are only identifiable in MIME format
messages. The user can define what should be spoken when a file
attachment is found (e.g., “There is an attachment to this message”),

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X1/288

v

Speechify Email Pre-processor

Chapter Xl

Modes

and the name of the file is read (e.g., “expenses.xls”). Otherwise,
MIME messages ate treated the same as partially processed messages.

You can control the behavior of the e-mail preprocessor through the
use of modes. The user can set the following modes using the
SWlemailProcess() function. (See chapter “API Reference” for more
info about this function)

Mode Function

DATE Read the Date line from the header
FROM Read the From line from the header
SUBJECT Read the Subject line from the header
BODY Read the message body

ADDRESS Read any address/signature blocks
MIME_FORMAT The message is in MIME format

At least one of DATE, FROM, SUBJECT, BODY, ADDRESS must
be selected. If the message is in MIME format, then
MIME_FORMAT should be combined with the other selections.
Modes are combined by using bitwise OR. Here are some examples:

Mode Function

DATE |BODY Read the date line and the message body
BODY | ADDRESS Read the body and any address/signatutre blocks
FROM |SUBJECT Read the from line and the subject line

Thus, for example, if you don’t want to hear the address/signature
blocks from a message, don’t select ADDRESS.

MIME_FORMAT desetves special mention because it specifies the
input rather than the desired output. If you enter a multipart MIME
format message and you don’t specify MIME_FORMAT, the speech
output contains the MIME section boundaries, making it difficult to
follow.

If you enter a message that is not in MIME format, and you do
specify MIME_ FORMAT, the message may be delivered in an
unexpected way. (For example: the body may be skipped altogether
and encoded data from file attachments is read out character by
character.)

If there are no attachments, the message is read identically whether
MIME_ FORMAT is on or not.

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter XI1/289

v Speechify Email Pre-processor

Chapter Xl

Using the E-mail Substitution
Dictionary

This paragraph explains the layout and use of the e-mail substitution
dictionary.

In This Paragraph

e Dictionary entries
e Comments and escapes
e Notifications

File format

The e-mail substitution dictionary file is an ASCII text file with one
entry per line. A default named “Email.dic” is supplied in the SDK’s
bin directory. You may supplement that or replace it entirely. (See
chapter “API Reference” for more info)

The dictionary is split into five sections:

e Header Entries for substitutions that should only take
place in the header

e Body Entries for substitutions that should only take place
in the message body

e Address Entries for substitutions that should only take
place in the address block

e Mime Entries for substitutions that should only take place
in a Mime section boundary

e Global Entries for substitutions that should take place
everywhere

The user can decide to expand the same string differently depending on
whether it is found in the header or the body, or only expand a string
if it is found in a specific section of the message, and ignore it if it
appears anywhere else.

The entries in the substitution dictionary do not need to be sorted.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI1/290

v

Speechify Email Pre-processor

Chapter Xl

Dictionary entries

Dictionary entries are of the form
TARGET,SUBSTITUTION

The target is the string to be replaced, and the substitution is the string
to replace the target. The target and the substitution are separated by a
comma, e.g.:

RE:Reply

This entry indicates that the e-mail pre-processor replaces the string
RE: with the string Rep/y. The entries have the same syntax for every
section. If an invalid entry is passed in, it is ignored and an error
message is logged to stderr. An invalid entry is a line that does not
contain a comma and at least one character on each side of the
comma (i.e., a target and a substitution).

A target can be any string of any sequence of characters. Multiple
words and tokens separated by white spaces are permitted. For
example:

George Bush, the former president George W. Bush, the new
president

The e-mail pre-processor replaces the longest string possible from left
to right. For example, given the hypothetical dictionary entries:

John, I
John Smith, my grandfather
John Smith Jr., my father

Input string Dictionary output
John Smith Jr. entered the room. my father entered the room.

Although both John and John Smith match the input, John Smith Jr. is
the longest match.

NOTE

When a target has been identified, it is replaced by everything in the
substitution. Be careful not to add a space at the end of the substitution
by mistake, as it may have consequences for subsequent processing.

For example, suppose we had the following dictionary entry, and
accidentally placed a space after the expansion:

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter XI1/291

v

Speechify Email Pre-processor

Chapter Xl

SSFT,scansoft

In this case, a web address www. ssft.com would be expanded to:
www.scansoft .com.

This spurious space character would prevent the web address from
being processed correctly at a later stage — it would be read as www dot
ScanSoft (pause)com instead of www dot ScanSoft dot com.

By default, the substitution dictionary entries are matched case-
insensitively. If you want an entry to be matched case-sensitively, you
should append an asterisk to the target. For example, given these
dictionary entries:

Tue,Tuesday Wed*,Wednesday

Input string Dictionary output
The couple wed on tue. The couple wed on Tuesday.
The couple wed on Wed. The couple wed on Wednesday.

If you want to use an asterisk as the last character of a genuine
substitution, you must escape it, by preceding it with a backslash, for
example, to match the input go/d* (case insensitive), use this
dictionary entry:

gold*,gold star

Comments and escapes

Notifications

The e-mail substitution dictionary supports comments. Any line that
begins with# is taken as a comment. If you want to use a hash or a
comma as part of the TARGET string, escaped it with a backslash.
Therefore, the backslash must be escaped too:

Original text Pre-processor behavior

HHH#H# This is a comment Not loaded into memory

\#3 Number Three Replace #3 with Number Three
Mon\,,Monday Replace Mon, with Monday
C:\\Temp, my temp drive Replace C:\Temp with my temp drive

Certain events can only be spotted inside the code (i.e., a simple
dictionary look-up sometimes is not enough). Examples are:

RealSpeak Telecom SDK V4.0

Programmer's Guide

December 2005 ScanSoft Proprietary
Chapter XI1/292

v Speechify Email Pre-processor

Chapter Xl

e UUencoded data

e octal data

e start of indented text
e end of indented text
e end of the message

When the e-mail pre-processor spots these, it inserts an upper case
constant into the text before substitutions are performed. The
constants that are inserted are self explanatory. They are:

Constant Meaning
IUUENCODED_DATA_NOTIFY! UU encoded data found
IOCTAL_DATA_NOTIFY! Octal data found
IINDENT_NOTIFY! Start of indented text found
IEND_OF_INDENT NOTIFY! End of indented text found
IEND_MSG_NOTIFY! End of message found

The following constants are also inserted when file attachments are
found in MIME format messages:

e IIMAGE_FILE_NOTIFY!

e IAUDIO_FILE_NOTIFY!

e IAPPLICATION_FILE_NOTIFY!
e [|VIDEO_FILE_NOTIFY!

e [ITEXT FILE_NOTIFY!

Specify substitution text for these in the substitution dictionary. (The
supplied Email.dic file contains appropriate defaults.) This means you
can define what you want RealSpeak to say when any of the above
events occur. If you want it to say nothing, don’t put anything after
the delimiter in the dictionary; e.g., if you don’t want the listener to be
notified that, say, the end of a message had been reached, change the
substitution dictionary entry from this:

IEND_MSG_NOTIFY!*,That’s the end of the message.
To this:

IEND_MSG_NOTIFY*,

NOTE

If you remove these constants from the dictionary, the constant
names are deleted by the e-mail pre-processor. This prevents the
internal notifications from being read out loud.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI1/293

v Speechify Email Pre-processor

Chapter Xl

Here is an example of a legal dictionary.

\!HEADER ENTRIES

Date:,The message artived on

From:, The message is from

FW:,the message was forwarded to you, and it’s about
RE:, the message is a reply, and it’s about

\IMIMEPART ENTRIES

HitHHHH#H## RealSpeak internal #H##H#H#HH#H#
IIMAGE_FILE_NOTIFY!,There’s an image file attached.
IAUDIO_FILE_NOTIFY!, There’s an audio file attached.
IAPPLICATION_FILE_NOTIFY!,Thete’s an application attached.
IVIDEO_FILE_NOTIFY!,There’s a video file attached.
ITEXT_FILE_NOTIFY! There’s a text file attached.

HHHHHHHH Generic #HHHHHHH
.txt, dot text.

.doc, dot doc.

\!BODY ENTRIES

\!GLOBAL ENTRIES

it ## RealSpeak internal ###H#HHHH
IUUENCODED_DATA_NOTIFYLI'll have to skip the next section.
IOCTAL_DATA_NOTIFYLI'll have to skip the next section.
INDENT_NOTIFY!, This next section of text is indented.
IEND_OF_INDENT_NOTIFY!, That’s the end of the indented section.
IEND_MSG_NOTIFY!,That’s the end of the message.

HHHHH T Generic #HHBHEHE
ASAP,as soon as possible

BTW,by the way

FYLfor your information,
WRT,with regard to

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X1/294

v Speechify Email Pre-processor

Chapter Xl

API Reference

All API function prototypes, types, error codes, and constants are
located in the header file SWIEmail.h.

In This Paragraph

e (alling convention
e Result codes

e SWlemaillnit()

e SWlemailProcess()
e SWlemailTerm()

Calling convention

The calling convention is dependent on the operating system, and is
defined in the SWIEmail.h header file.

Under NT:
#define SWIAPI __stdcall
Under Unix:

#define SWIAPI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/295

v

Speechify Email Pre-processor

Chapter Xl

Result codes

Code
SWlemail SUCCESS

SWlemail BAD_FILE_FORMAT

SWlemail EMPTY_MESSAGE
SWlemail ERROR
SWlemail FATAIL_EXCEPTION

SWlemail FILE_NOT_FOUND

SWlemail MEM_REQUEST

SWlemail UNINITIALIZED

The following result codes are defined in the enum SWlemailResult
in SWIEmail.h.

Description
The function completed
successfully

The substitution dictionary
doesn’t contain all 5
section headings

The input string is empty
There was an error in the APL
(NT only.) A crash occurred
within the SWlemail library.
You should shut down the
application.

Unable to locate the substitution
dictionary

The output string is bigger than
the input buffer

SWIEmailProcess() was called
before SWIEmaillnit()

RealSpeak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Chapter XI1/296

v Speechify Email Pre-processor

Chapter Xl

SWlemaillnit()

Mode: Synchronous

Initialize the substitution dictionary.

SWlemailResult SWIAPI SWlemaillnit(const char *FilePath)

Parameter Description
FilePath Path to the substitution dictionary
Notes
This must be the first API function called for the e-mail pre-
processot.
If you pass in your own FilePath, you can call the dictionary whatever
you want. If FilePath is NULL, then SWlemaillnit() checks for the
existence of the environment variable SWITTSSDK. If it exists,
SWlemaillnit() tries to load Email.dic from the path
SWITTSSDK/bin. If the vatiable doesn’t exist, SWlemaillnit() tries
to load Email.dic from the current working directory.
Return code Meaning for SWlemaillnit()
SWlemail SUCCESS SWlemaillnit()returned
successfully
SWlemail BAD_FILE_FORMAT The file does not contain the
section headings for the
HEADER, BODY, ADDRESS,
MIMEPART, and GLOBAL
sections.
SWlemail ERROR Error opening the file
SWlemail FILE NOT_FOUND SWlemaillnit() did not find a file
atall
RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide Chapter XI1/297

v Speechify Email Pre-processor

Chapter Xl

SWlemailProcess()

Mode: Synchronous

Processes an e-mail message.

SWlemailResult SWIAPI SWlemailProcess(const char *Message, int
*BufferSize, unsigned char Modes)

Parameter Description

Message The e-mail message as a null-terminated
string. The output is copied into this
buffer.

BufferSize Size of the input buffer. Its contents are
changed if the output string is bigger then
the input buffer.

Modes Modes through combinations of the mode

variables defined in SWIEmail.h.(See
“Modes” in chapter)

Return code Meaning for
SWIemailProcess()

SWlemail SUCCESS SWlemailProcess() returned
successfully

SWlemail EMPTY_MESSAGE Input string is empty.

SWlemail ERROR Memory error in the APL.

SWlemail MEM_REQUEST The output string is longer than

the input buffer, and the value of
the contents of BufferSize is
changed to the required size.

SWlemail UNINITIALIZED SWlemailProcess()called before
SWilemaillnit().

Notes

The parameter BufferSize tells the function how long the input buffer
is. If the function returns SWlemail MEM_REQUEST, the
application should reallocate the input buffer to the appropriate size
and call SWlemailProcess() again.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X1/298

v Speechify Email Pre-processor

Chapter Xl

SWlemailTerm()

Mode: Synchronous

Frees resources used by the preprocessor library.
SWlemailResult SWIAPI SWlemailTerm()

SWlemailTerm() must be the last function called. If it is called before
calling SWlemaillnit(), it returns SWlemail UNINITIALIZED. It
returns SWlemail SUCCESS on completion.

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI1/299

RealSpeak Telecom
Sottware Development Kit

Appendices

Programmer’s Guide

TTSPARAM member values

Appendix A

Appendices

Appendix: TTSPARM member values

The following table shows the list of acceptable values for each
member in the TTSPARM structure specified when a RealSpeak
engine instance is initialized via the Ttslnitialize(Ex) function:

TTSPARM member | Acceptable values

TTS_LANG_US_ENGLISH
TTS_LANG_SPANISH
TTS_LANG_FRENCH
TTS_LANG_NETHERLANDS_DUTCH
TTS_LANG_DUTCH
TTS_LANG_BRITISH_ENGLISH
TTS_LANG_GERMAN
TTS_LANG_ITALIAN
TTS_LANG_JAPANESE
TTS_LANG_KOREAN
TTS_LANG_EGYPTIAN_ARABIC
TTS_LANG_MANDARIN_B5
TTS_LANG_BRAZILIAN_PORTUGUESE
TTS_LANG_RUSSIAN
TTS_LANG_MEXICAN_SPANISH
TTS_LANG_BELGIAN_DUTCH
TTS_LANG_SWEDISH
TTS_LANG_NORWEGIAN
TTS_LANG_MANDARIN_GB
TTS_LANG_AUSTRALIAN_ENGLISH
TTS_LANG_CANADIAN_FRENCH
TTS_LANG_CANTONESE_B5
TTS_LANG_CANTONESE_GB
TTS_LANG_DANISH
TTS_LANG_PORTUGAL_PORTUGUESE
TTS_LANG_POLAND_POLISH
TTS_LANG_ARMENIA_ARMENIAN
TTS_LANG_UKRAINIAN
TTS_LANG_GREEK
TTS_LANG_VIETNAMESE
TTS_LANG_MALAY

nlanguage

Real Speak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix A/301

Appendix A

TTSPARAM member values

TTSPARM member

Acceptable values

TTS_LANG_PAKISTAN_URDU
TTS_LANG_INDONESIA_BAHASA
TTS_LANG_IRAN_FARSI
TTS_LANG_BELARUSIAN
TTS_LANG_CZECH
TTS_LANG_HUNGARIAN
TTS_LANG_INDIA_TAMIL
TTS_LANG_THAILAND_THAI
TTS_LANG_TURKISH
TTS_LANG_TAIWANESE
TTS_LANG_INDIA_HINDI
TTS_LANG_TAIWAN_MANDARIN_B5
TTS_LANG_TAIWAN_MANDARIN_GB
TTS_LANG_BELGIAN_FRENCH
TTS_LANG_INDIAN_ENGLISH

nOutputType

TTS_LINEAR_16BIT
TTS_MULAW_S8BIT
TTS_ALAW_8BIT

nFrequency

TTS_FREQ_SKHZ
TTS_FREQ_11KHZ
TTS_FREQ_22KHZ

nVoice

TTS_RS_VOICE_FEMALE
TTS_RS_VOICE_MALE
TTS_3000_VOICE_FEMALE
TTS_3000_VOICE_MALE
TTS_RS_VOICE_FEMALE2
TTS_RS_VOICE_MALE2
TTS_RS_VOICE_FEMALE3
TTS_RS_VOICE_MALE3
TTS_VOICE_USE_STRING

Real Speak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary

Appendix A/302

RealSpeak API Function Directory

Appendix B

Appendix: RealSpeak API Function Directory

The following table shows an alphabetical list of the RealSpeak v4
API functions. The RealSpeak v3.5 functions for which exists a new
variant are also supported, but their name is put in-between brackets.

Use this Function...

To Perform this Task...

Create a TTS engine instance on the

TtsCreateEngine
serverl.
TtsDisableUsrDictEx Disable a dictionary instance for a
(TtsDisableUstDict) channel.
TtsDisableUsrDictsEx Disable all dictionary instances for a
channel
TtsEnableUsrDictEx Enable a dictionaty instance for a
(TtsEnableUsrDict) channel.
TtsGetG2PDictList Get the list of custom G2P dictionaries
on the system for the current language.
TtsGetG2PDictTotal Retrieve the total number of custom
G2P dictionaries on the system for the
current language.
TtsGetParams Get the values of a parameter. list
TtsGetParam Get the value of a parameter.
TtsInitializeFx Create an instance of the TTS engine.
(TtsInitialize)
TtsLoad G2PDictList Load a list of G2P dictionaries
TtsLoadUsrDictEx Load a user dictionary to be used by the
(TtsLoadUstDict) engine.

TtsProcessEx (TtsProcess)

Convert input data (text) into output
data (speech).

TtsRemoveEngine Remove an instance of an engine from
the server.

TtsSetParams Set the values for multiple parameters.

TtsSetParam Set the values for the document type,
rate, and volume.

TtsStop Stops the Text-To-Speech process.

TtsUninitialize Free all resources allocated to an engine.

TtsUnloadG2PDictList Unload a list of G2P dictionaries

TtsUnloadUsrDictEx Unload a dictionary from memory; frees

1 This is no longer the case with v4; for the moment it is a dummy function, reserved for

future use.

Real Speak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Appendix B/303

Appendix B

RealSpeak API Function Directory

Use this Function... To Perform this Task...
(TtsUnloadUstDict) memory resources.
Real Speak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide

Appendix B/304

Running a TTS server as a service (Windows only)

Appendix

C

Appendix: Running a TTS server as a service
(Windows only)

A service in Microsoft® Windows is a program that runs whenever
the computer is running the operating system. It does not require a
user to be logged on. For more information on how to run and
configure Windows services, refer to the Microsoft documentation
that comes with your operating system.

Included with the Telecom RealSpeak/Host SDK is a
ttsserver_service.exe, which is a version of ttsserver.exe that can run
as a Windows service.

If ttsserver_service is not already registered as a service, then you can
do so with the following command:

ttsserver_service —i

To unregister, use the —u parameter:

ttsserver_service —u

To work propetly, the TTS server must be configured using
$SSFTTTSSDK/ config/ttsserver.xml. For information on that

configuration file, see the “Configuration Files” section in the “User
Configuration” chapter..

Real Speak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Appendix C/305

Port Density Simulator

Appendix D

Appendix: Port density simulator

The port density simulator can help a customer identify the hardware
needed in order to run a certain amount of RealSpeak channels in
real-time. Real-time means that any generated PCM, on any of the
active channels, can be spoken as soon as possible without any
interruptions.

The simulator starts out using the input parameters given on the
command line. In its simplest form a thread will be created and will
process the requested language, output type, voice, output buffer size
and input text.

When processing, the E-mail pre-processor is not enabled and no
user dictionaries are loaded. Immediately when the thread finishes a
result will be returned reporting if the current thread was executed in
real-time or not. If it took less time to generate the PCM then it
would take time to speak the text then it's considered real-time.

The simulator will continue to increase the amount of active

threads, one by one, until the system reaches a point were the overall
system is not real-time anymore. This point is reached when the
average thread isn't real-time. A real-time time index (RTT) is
attached to each executed thread and a number below 100 means not
real-time and a number equal or greater then 100 as real-time. At
different steps of the program data will be collected in a

formatted output file (name is user-defined).

The generated output file is a comma-separated file that can be
imported directly into a spreadsheet.

Syntax:

Usage: density.exe Langld Voiceld OutType StartAt# OutSize
LibDir InName OutName

Where:
Langld: The language define from lh_ttsso.h
Voiceld: 'The voice define from lh_ttso.h
OutType: The output type define from lh_ttso.h
StarAt#: Sets the minimum amount of active threads (min 1)
OutSize: Sets the output buffer size (must be even)
LibDir: Points to the engine directory
InName: Name of the input text file
OutName: Name of the output file (.csv file)

Example: density.exe 0 0 0 1 2048 ./speech ./input.txt ./output.csv

Real Speak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix D/306

Copyright and Licensing for third party software

Appendix

E

Appendix: Copyright and Licensing for third party

software

The Telecom RealSpeak/Host SDK utilizes certain open source
software packages. Copyright and licensing information for these
packages are included in this section.

ADAPTIVE Communication Environment (ACE)

Copyright and Licensing Information for ACE(TM) and TAO(TM)

[1JACE(TM) and [2]TAO(TM) are copyrighted by [3]Douglas C.
Schmidt and his [4]research group at [5]Washington University,
Copyright (c) 1993-2001, all rights reserved. Since ACE and TAO are
[6]open source, [7]free software, you are free to use, modify, and
distribute the ACE and TAO source code and object code produced
from the source, as long as you include this copyright statement along
with code built using ACE and TAO.

In particular, you can use ACE and TAO in proprietary software and
are under no obligation to redistribute any of your source code that is
built using ACE and TAO. Note, however, that you may not do
anything to the ACE and TAO code, such as copyrighting it yourself
ot claiming authorship of the ACE and TAO code, that will prevent
ACE and TAO from being distributed freely using an open source
development model.

ACE and TAO are provided as is with no warranties of any kind,
including the warranties of design, merchantability and fitness for a
particular purpose, noninfringement, or arising from a course of
dealing, usage or trade practice. Moreover, ACE and TAO are
provided with no support and without any obligation on the part of
Washington University, its employees, or students to assist in its use,
cotrection, modification, or enhancement. However, commercial
support for ACE and TAO are available from [8]Riverace and
[9]OCI, respectively. Moreover, both ACE and TAO are Y2K-
compliant, as long as the undertlying OS platform is Y2K-compliant.

Washington University, its employees, and students shall have no
liability with respect to the infringement of copyrights, trade secrets
or any patents by ACE and TAO or any part thereof. Moreover, in no
event will Washington University, its employees, or students be liable
for any lost revenue or profits or other special, indirect and
consequential damages.

The [10]ACE and [11]TAO web sites are maintained by the
[12]Center for Distributed Object Computing of Washington
University for the development of open source software as part of the
[13]open source software community. By submitting comments,

Real Speak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Appendix E/307

Copyright and Licensing for third party software

Appendix E

suggestions, code, code snippets, techniques (including that of usage),
and algorithms, submitters acknowledge that they have the right to
do so, that any such submissions are given freely and unreservedly,
and that they waive any claims to copyright or ownership. In addition,
submitters acknowledge that any such submission might become part
of the copyright maintained on the overall body of code, which
comprises the [14]|ACE and [15]TAO software. By making a
submission, submitter agrees to these terms. Furthermore, submitters
acknowledge that the incorporation or modification of such
submissions is entirely at the discretion of the moderators of the open
source ACE and TAO projects or their designees.

The names ACE (TM), TAO(TM), and Washington University may
not be used to endorse or promote products or services derived from
this source without express written permission from Washington
University. Further, products or services derived from this soutrce
may not be called ACE(TM) or TAO(TM), notr may the name
Washington University appear in their names, without express written
permission from Washington University.

If you have any suggestions, additions, comments, ot questions,
please let [16]me know.

[17]Douglas C. Schmidt
Back to the [18]JACE home page.
References

1. http:/ /www.cs.wustl.edu/~schmidt/ ACE.html
2. http://www.cs.wustl.edu/~schmidt/TAO.html
3. http://www.cs.wustl.edu/~schmidt/
4. http://www.cs.wustl.edu/~schmidt/ACE-members.html
5. http://www.wustl.edu/
6. http:/ /www.opensource.org/
7. http:/ /www.gnu.org/
8. http://www.tiverace.com/
9. file:/ /localhost/home/cs/ faculty/schmidt/ .www-
docs/www.ociweb.com
10. http:/ /www.cs.wustl.edu/~schmidt/ ACE.html
11. http:/ /www.cs.wustl.edu/~schmidt/TAO.html
12. http:/ /www.cs.wustl.edu/~schmidt/doc-center.html
13. http:/ /www.opensource.otg/
14. http:/ /www.cs.wustl.edu/~schmidt/ ACE-obtain.html
15. http:/ /www.cs.wustl.edu/~schmidt/TAO-obtain.html
16. mailto:schmidt@cs.wustl.edu
17. http:/ /www.cs.wustl.edu/~schmidt/
18. file:/ /localhost/home/cs/ faculty/schmidt/ .www-
docs/ACE.html

Real Speak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix E/308

Copyright and Licensing for third party software

Appendix

Apache Group

E

The Apache Software License, Version 1.1 Copyright (c) 1999 The
Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other matetials provided with the distribution.

3. The end user documentation included with the redistribution, f
any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation
(http://www.apache.otg/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party
acknowledgments normally appear.

4. The names "Xerces" and "Apache Software Foundation" must not
be used to endorse or promote products derived from this software
without prior written permission. For written permission, please
contact apache@apache.org.

5. Products derived from this software may not be called "Apache",
nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

Real Speak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Appendix E/309

Copyright and Licensing for third party software

Appendix E

This software consists of voluntary contributions made by many
individuals on behalf of the Apache Software Foundation and was
originally based on software copyright (c) 1999, International
Business Machines, Inc., http://www.ibm.com. For more
information on the Apache Software Foundation, please see
<http://www.apache.otg/>.

The Flite Speech Synthesis System

Language Technologies Institute
Carnegie Mellon University
Copyright (c) 1999-2003

All Rights Reserved.
http://cmuflite.org

Dinkumware C++ Library for Visual C++

Developed by P.J. Plauger

Copyright (c) 1992-2000 by P.J. Plauger
Dinkumware, Ltd.

398 Main Street

Concord MA 01742

RSA Data Security, Inc. MD5 Message-Digest Algorithm

Copyright (c) 1991-1992, RSA Data Security, Inc. Created 1991. All
Rights
Reserved.

ICU

http://oss.software.ibm.com/icu/
COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2003 International Business Machines
Corporation and others
All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Softwate"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of
the Software and that both the above copyright notice(s) and this
permission notice appear in supporting documentation.

Real Speak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix E/310

Copyright and Licensing for third party software

Appendix E

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT

OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR

HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL

INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY
DAMAGES WHATSOEVER RESULTING

FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION

WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder
shall not be used in advertising or otherwise to promote the sale, use
or other dealings in this Software without prior written authorization
of the copyright holder.

All trademarks and registered trademarks mentioned herein are the
property of their respective owners.

PCRE
PCRE LICENCE
PCRE is a library of functions to support regular expressions whose
syntax and semantics are as close as possible to those of the Perl 5
language.
Release 5 of PCRE is distributed under the terms of the "BSD"
licence, as specified below. The documentation for PCRE, supplied in
the "doc" directory, is distributed under the same terms as the
software itself.
Written by: Philip Hazel <ph10@cam.ac.uk>
University of Cambridge Computing Service,
Cambridge, England. Phone: +44 1223 334714.
Copyright (c) 1997-2004 University of Cambridge
All rights reserved.
Redistribution and use in source and binary forms, with or without
Real Speak Telecom SDK V4.0 December 2005 ScanSoft Proprietary

Programmer's Guide

Appendix E/311

Copyright and Licensing for third party software

Appendix E

modification, are permitted provided that the following conditions are
met:

e Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.

e Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

e Neither the name of the University of Cambridge nor the
names of its contributors may be used to endorse or promote
products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Real Speak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix E/312

v

RealSpeak Languages

Appendix F

Appendix: RealSpeak Languages

The following table shows a list of all the RealSpeak languages, sorted
according to the ISO language code. It also specifies the 3-letter
RealSpeak language code (which is used to specify the language in the
header of user dictionaries and rulesets) and the native character set.
Note that for each given language, TTS input encoded in another
supported (coded) character set is converted to the native character
set for that language before it is processed internally. See the
RealSpeak Usetr’s Guide for each language for more details.

Real Speak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Appendix F/313

v

Appendix F

RealSpeak Languages

Language ISO RealSpeak Native
name language language code | character set
code
Danish da-DK DAD windows-1252
Swiss German de-CH GEC windows-1252
German de-DE GED windows-1252
Australian en-AU ENA windows-1252
English
British English en-GB ENG windows-1252
Indian English en-IN ENI windows-1252
American en-US ENU windows-1252
English
Spanish es-ES SPE windows-1252
Mexican Spanish | es-MX SPM windows-1252
Basque eu-ES BAE windows-1252
Belgian French fr-BE FRB windows-1252
Canadian French | fr-CA FRC windows-1252
Swiss French fr-CH FNC windows-1252
French fr-FR FRF windows-1252
Swiss Italian it-CHC ITC windows-1252
Ttalian it-IT ITI windows-1252
Japanese ja-]P JP] Shift-]JIS
Korean ko-KR KOK windows-949
Korean kr-KR KOK windows-949
Belgian Dutch nl-BE DUB windows-1252
Dutch nl-NL DUN windows-1252
Norwegian no-NO NON windows-1252
Polish pl-PL PLP windows-1250
Brazilian pt-BR PTB windows-1252
Portuguese
Portuguese pt-PT PTP windows-1252
Russian ru-RU RUR windows-1251
Swedish sv-SE SWS windows-1252
Mandarin zh-CN MNC windows-936
Chinese! (GB2312) or
windows-950
(Big5)

Hong Kong zh-HK CAH windows-950
Cantonese? (Bigh)

1 “Mandarin Chinese GB” and “Mandarin Chinese B5” are also supported as valid
languages; they also specify the native character set to be used.
2 “Hong Kong Cantonese B5” is also supported as a valid language; it also specifies the
native character set to be used.

Real Speak Telecom SDK V4.0
Programmer's Guide

December 2005

ScanSoft Proprietary
Appendix F/314

v Tips for using RealSpeak

Appendix G

Appendix: Tips for using RealSpeak

Operating System Restrictions

Each instance of RealSpeak requires a number of file handles which
are used for accessing among others the language database. Some
operating systems, such as Microsoft Windows, have a default limit of
file handles per process. If you have a large number of RealSpeak
instances, the application can run out of file handles. In order to
avoid this problem, ScanSoft recommends you to set the amount of
file handles to an appropriate value. For Microsoft Windows, you can
set this value by having your application issue the _setmaxstdio() C-
runtime call. See your compiler or operating system manual for more
information.

For Unix, the number of file handles can be increased by means of
the limit/ulimit commands. For more information about these
commands, refer to the man pages or to the compiler manual.

Optimal Audio Buffer size

For optimal performance in client-server mode, the audio buffer size
should be set to 4k (4096) bytes. This buffer is provided by the
application and is specified via the return value of the TTSDESTCB
typed Destination call-back function.

Limiting delays when internet fetching is used

When content such as input texts, user dictionaries and rulesets are
located on a Web server, this can result in delays when the content is
fetched for the first time. But since the internet fetch library uses a
(configurable) cache, the download time will be minimal if the cache
has been configured well (big enough, reasonable cache entry
expiration time) and the cache has been warmed up.

To warm up the cache, the application could perform a number of
dummy speak requests. For input texts, the content will already be
cached before the Destination call-back is called for the first time.

So during the warmup, the application can call the TtsStop function
from that moment on to speed up the warmup.

Audio content specified via the SSML <audio> tag, is always fetched
on message (normally a sentence) boundaries, but not necessarily
before the first call to the Destination call-back. User dictionaries and
rulesets can be loaded and unloaded to obtain a copy in the cache
without consuming RAM memory. If RAM usage is not a problem,
load them as soon as possible.

Real Speak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix G/315

v
Appendix

Tips for using RealSpeak

G

Binary versus textual user dictionaries

If the application repeatedly loads/unloads one or more user
dictionaries (such as load it for a single speak request here and there),
then a binary dictionary loads faster. But once loaded, the run-time
access speed is the same. When loading all dictionaries at startup, it
doesn't really matter. When default dictionaries are specified in the
server configuration file (via the <default_dictionaries> element),
they are loaded/unloaded when the language (or voice) parameter is
updated via TtsSetParam(s) or when an engine instance is created.
The User Dictionary Editor (UDE) is the only way to obtain a binary
dictionary. Please check out the online help documentation that
comes with the UDE for detailed instructions.

Real Speak Telecom SDK V4.0
Programmer's Guide

December 2005 ScanSoft Proprietary
Appendix G/316

